基于gpu的深度学习应用性能预测

E. Gianniti, Li Zhang, D. Ardagna
{"title":"基于gpu的深度学习应用性能预测","authors":"E. Gianniti, Li Zhang, D. Ardagna","doi":"10.1109/CAHPC.2018.8645908","DOIUrl":null,"url":null,"abstract":"Recent years saw an increasing success in the application of deep learning methods across various domains and for tackling different problems, ranging from image recognition and classification to text processing and speech recognition. In this paper we propose and validate an approach to model the execution time for training convolutional neural networks (CNNs) deployed on GPGPUs. We demonstrate that our approach is generally applicable to a variety of CNN models and different types of G PG PU s with high accuracy, aiming at the preliminary design phases for system sizing.","PeriodicalId":307747,"journal":{"name":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Performance Prediction of GPU-Based Deep Learning Applications\",\"authors\":\"E. Gianniti, Li Zhang, D. Ardagna\",\"doi\":\"10.1109/CAHPC.2018.8645908\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recent years saw an increasing success in the application of deep learning methods across various domains and for tackling different problems, ranging from image recognition and classification to text processing and speech recognition. In this paper we propose and validate an approach to model the execution time for training convolutional neural networks (CNNs) deployed on GPGPUs. We demonstrate that our approach is generally applicable to a variety of CNN models and different types of G PG PU s with high accuracy, aiming at the preliminary design phases for system sizing.\",\"PeriodicalId\":307747,\"journal\":{\"name\":\"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"volume\":\"48 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CAHPC.2018.8645908\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Symposium on Computer Architecture and High Performance Computing (SBAC-PAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAHPC.2018.8645908","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

近年来,深度学习方法在各个领域的应用越来越成功,并解决了从图像识别和分类到文本处理和语音识别的不同问题。在本文中,我们提出并验证了一种方法来模拟部署在gpgpu上的训练卷积神经网络(cnn)的执行时间。针对系统规模的初步设计阶段,我们证明了我们的方法一般适用于各种CNN模型和不同类型的gpg PU,并且精度很高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Performance Prediction of GPU-Based Deep Learning Applications
Recent years saw an increasing success in the application of deep learning methods across various domains and for tackling different problems, ranging from image recognition and classification to text processing and speech recognition. In this paper we propose and validate an approach to model the execution time for training convolutional neural networks (CNNs) deployed on GPGPUs. We demonstrate that our approach is generally applicable to a variety of CNN models and different types of G PG PU s with high accuracy, aiming at the preliminary design phases for system sizing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信