遗传算法加权中值滤波器的无监督多目标设计

Y. Hanada, Y. Orito
{"title":"遗传算法加权中值滤波器的无监督多目标设计","authors":"Y. Hanada, Y. Orito","doi":"10.1109/CIMSIVP.2014.7013281","DOIUrl":null,"url":null,"abstract":"In this paper, a new unsupervised design method of the weighted median filter (WMF) is proposed for recovering images from impulse noise. A design problem of WMFs is to determine a suitable window shape, and an appropriate weight for each element in the window. The purpose of the filter for the noise removal is generally to estimate the original values precisely for corrupted pixels while preserving the original values of non-corrupted pixels. WMF is required to output the image with higher preservation quality and higher restoration quality, however, these qualities often have a trade-off relation. Here, we formulate the design of WMF as a multi-objective optimization problem that treats the preservation performance and the restoration performance as trade-off functions. Through the experiments, we show our method obtains a wide variety of filters that have the high preservation performance or the high restoration performance at one search process. In addition, we also discuss how to select a good set of sophisticated filters from the designed filters.","PeriodicalId":210556,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised multiobjective design for weighted median filters using genetic algorithm\",\"authors\":\"Y. Hanada, Y. Orito\",\"doi\":\"10.1109/CIMSIVP.2014.7013281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a new unsupervised design method of the weighted median filter (WMF) is proposed for recovering images from impulse noise. A design problem of WMFs is to determine a suitable window shape, and an appropriate weight for each element in the window. The purpose of the filter for the noise removal is generally to estimate the original values precisely for corrupted pixels while preserving the original values of non-corrupted pixels. WMF is required to output the image with higher preservation quality and higher restoration quality, however, these qualities often have a trade-off relation. Here, we formulate the design of WMF as a multi-objective optimization problem that treats the preservation performance and the restoration performance as trade-off functions. Through the experiments, we show our method obtains a wide variety of filters that have the high preservation performance or the high restoration performance at one search process. In addition, we also discuss how to select a good set of sophisticated filters from the designed filters.\",\"PeriodicalId\":210556,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIMSIVP.2014.7013281\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence for Multimedia, Signal and Vision Processing (CIMSIVP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIMSIVP.2014.7013281","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新的无监督加权中值滤波器设计方法,用于从脉冲噪声中恢复图像。wmf的一个设计问题是确定合适的窗口形状,并为窗口中的每个元素确定合适的权重。滤波器去除噪声的目的一般是在保留未损坏像素的原始值的同时,精确地估计损坏像素的原始值。WMF要求输出的图像具有较高的保存质量和较高的恢复质量,但这两种质量往往存在权衡关系。在这里,我们将WMF的设计表述为一个多目标优化问题,将保存性能和恢复性能作为权衡函数。通过实验表明,该方法在一次搜索过程中获得了多种具有高保存性能或高恢复性能的滤波器。此外,我们还讨论了如何从设计好的滤波器中选择一组好的复杂滤波器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unsupervised multiobjective design for weighted median filters using genetic algorithm
In this paper, a new unsupervised design method of the weighted median filter (WMF) is proposed for recovering images from impulse noise. A design problem of WMFs is to determine a suitable window shape, and an appropriate weight for each element in the window. The purpose of the filter for the noise removal is generally to estimate the original values precisely for corrupted pixels while preserving the original values of non-corrupted pixels. WMF is required to output the image with higher preservation quality and higher restoration quality, however, these qualities often have a trade-off relation. Here, we formulate the design of WMF as a multi-objective optimization problem that treats the preservation performance and the restoration performance as trade-off functions. Through the experiments, we show our method obtains a wide variety of filters that have the high preservation performance or the high restoration performance at one search process. In addition, we also discuss how to select a good set of sophisticated filters from the designed filters.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信