稀疏多项式的快速并行多点求值

M. Monagan, Alan Wong
{"title":"稀疏多项式的快速并行多点求值","authors":"M. Monagan, Alan Wong","doi":"10.1145/3115936.3115940","DOIUrl":null,"url":null,"abstract":"We present a parallel algorithm to evaluate a sparse polynomial in Zp[x0, ..., xn] into many bivariate images, based on the fast multi-point evaluation technique described by van der Hoeven and Lecerf [11]. We have implemented the fast parallel algorithm in Cilk C. We present benchmarks demonstrating good parallel speedup for multi-core computers. Our algorithm was developed with a specific application in mind, namely, the sparse polynomial GCD algorithm of Hu and Monagan [6] which requires evaluations of this form. We present benchmarks showing a large speedup for the polynomial GCD problem.","PeriodicalId":102463,"journal":{"name":"Proceedings of the International Workshop on Parallel Symbolic Computation","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fast Parallel Multi-point Evaluation of Sparse Polynomials\",\"authors\":\"M. Monagan, Alan Wong\",\"doi\":\"10.1145/3115936.3115940\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a parallel algorithm to evaluate a sparse polynomial in Zp[x0, ..., xn] into many bivariate images, based on the fast multi-point evaluation technique described by van der Hoeven and Lecerf [11]. We have implemented the fast parallel algorithm in Cilk C. We present benchmarks demonstrating good parallel speedup for multi-core computers. Our algorithm was developed with a specific application in mind, namely, the sparse polynomial GCD algorithm of Hu and Monagan [6] which requires evaluations of this form. We present benchmarks showing a large speedup for the polynomial GCD problem.\",\"PeriodicalId\":102463,\"journal\":{\"name\":\"Proceedings of the International Workshop on Parallel Symbolic Computation\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Workshop on Parallel Symbolic Computation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3115936.3115940\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Workshop on Parallel Symbolic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3115936.3115940","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

提出了一种求解Zp[x0,…]中的稀疏多项式的并行算法。, xn]基于van der Hoeven和Lecerf[11]描述的快速多点评估技术,将其分解为多个二元图像。我们已经在Cilk c中实现了快速并行算法。我们提供的基准测试显示了多核计算机的良好并行加速。我们的算法是考虑到一个特定的应用而开发的,即Hu和Monagan[6]的稀疏多项式GCD算法,它需要这种形式的评估。我们提供的基准测试显示多项式GCD问题有很大的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast Parallel Multi-point Evaluation of Sparse Polynomials
We present a parallel algorithm to evaluate a sparse polynomial in Zp[x0, ..., xn] into many bivariate images, based on the fast multi-point evaluation technique described by van der Hoeven and Lecerf [11]. We have implemented the fast parallel algorithm in Cilk C. We present benchmarks demonstrating good parallel speedup for multi-core computers. Our algorithm was developed with a specific application in mind, namely, the sparse polynomial GCD algorithm of Hu and Monagan [6] which requires evaluations of this form. We present benchmarks showing a large speedup for the polynomial GCD problem.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信