离散无内存信道上的近最优采样优化通信

M. A. Tope, J.M. Morris
{"title":"离散无内存信道上的近最优采样优化通信","authors":"M. A. Tope, J.M. Morris","doi":"10.1109/CISS56502.2023.10089651","DOIUrl":null,"url":null,"abstract":"This paper develops a strategy to minimize the number of channel probes required to recover the components of the channel law and maximize the reliable communication rate across a discrete memoryless channel (DMC). Based on the aggregate set of observed input-output pairs over time, the algorithm sequentially probes subsets of channel input values. We leverage a non-asymptotic probably approximately correct (PAC) bounds to establish the rate of convergence towards channel capacity as $O(\\sqrt{\\log(\\log(N))\\log(N)/N)}s$, where $N$ is the number of channel probes. For a discrete channel with $\\vert \\mathcal{X}\\vert$ input values and $\\vert \\mathcal{Y}\\vert$ output values, the sampling strategy may reduce the sample complexity by a factor of nearly $\\min(\\vert \\mathcal{X}\\vert /\\vert \\mathcal{Y}\\vert, 1)$ relative to previous methods.","PeriodicalId":243775,"journal":{"name":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near-optimal Sampling to Optimize Communication Over Discrete Memoryless Channels\",\"authors\":\"M. A. Tope, J.M. Morris\",\"doi\":\"10.1109/CISS56502.2023.10089651\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops a strategy to minimize the number of channel probes required to recover the components of the channel law and maximize the reliable communication rate across a discrete memoryless channel (DMC). Based on the aggregate set of observed input-output pairs over time, the algorithm sequentially probes subsets of channel input values. We leverage a non-asymptotic probably approximately correct (PAC) bounds to establish the rate of convergence towards channel capacity as $O(\\\\sqrt{\\\\log(\\\\log(N))\\\\log(N)/N)}s$, where $N$ is the number of channel probes. For a discrete channel with $\\\\vert \\\\mathcal{X}\\\\vert$ input values and $\\\\vert \\\\mathcal{Y}\\\\vert$ output values, the sampling strategy may reduce the sample complexity by a factor of nearly $\\\\min(\\\\vert \\\\mathcal{X}\\\\vert /\\\\vert \\\\mathcal{Y}\\\\vert, 1)$ relative to previous methods.\",\"PeriodicalId\":243775,\"journal\":{\"name\":\"2023 57th Annual Conference on Information Sciences and Systems (CISS)\",\"volume\":\"73 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 57th Annual Conference on Information Sciences and Systems (CISS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CISS56502.2023.10089651\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 57th Annual Conference on Information Sciences and Systems (CISS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CISS56502.2023.10089651","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文开发了一种策略,以尽量减少所需的信道探头的数量,以恢复信道律的组成部分,并最大限度地提高可靠的通信速率跨离散无记忆信道(DMC)。该算法基于一段时间内观察到的输入输出对的集合,依次探测通道输入值的子集。我们利用一个非渐近可能近似正确(PAC)界限来确定信道容量的收敛速度为$O(\sqrt{\log(\log(N))\log(N)/N)}s$,其中$N$是信道探测的数量。对于具有$\vert \mathcal{X}\vert$输入值和$\vert \mathcal{Y}\vert$输出值的离散通道,相对于以前的方法,该采样策略可以将采样复杂度降低近$\min(\vert \mathcal{X}\vert /\vert \mathcal{Y}\vert, 1)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near-optimal Sampling to Optimize Communication Over Discrete Memoryless Channels
This paper develops a strategy to minimize the number of channel probes required to recover the components of the channel law and maximize the reliable communication rate across a discrete memoryless channel (DMC). Based on the aggregate set of observed input-output pairs over time, the algorithm sequentially probes subsets of channel input values. We leverage a non-asymptotic probably approximately correct (PAC) bounds to establish the rate of convergence towards channel capacity as $O(\sqrt{\log(\log(N))\log(N)/N)}s$, where $N$ is the number of channel probes. For a discrete channel with $\vert \mathcal{X}\vert$ input values and $\vert \mathcal{Y}\vert$ output values, the sampling strategy may reduce the sample complexity by a factor of nearly $\min(\vert \mathcal{X}\vert /\vert \mathcal{Y}\vert, 1)$ relative to previous methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信