Katsunobu Imai, Takahiro Hatsuda, V. Poupet, Kota Sato
{"title":"Kite和Dart Penrose平铺上的一般半全元胞自动机","authors":"Katsunobu Imai, Takahiro Hatsuda, V. Poupet, Kota Sato","doi":"10.4204/EPTCS.90.21","DOIUrl":null,"url":null,"abstract":"In this paper we investigate certain properties of semi-totalistic cellular automata (CA) on the well known quasi-periodic kite and dart two dimensional tiling of the plane presented by Roger Penrose. We show that, despite the irregularity of the underlying grid, it is possible to devise a semi-totalistic CA capable of simulating any boolean circuit on this aperiodic tiling.","PeriodicalId":415843,"journal":{"name":"AUTOMATA & JAC","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Universal Semi-totalistic Cellular Automaton on Kite and Dart Penrose Tilings\",\"authors\":\"Katsunobu Imai, Takahiro Hatsuda, V. Poupet, Kota Sato\",\"doi\":\"10.4204/EPTCS.90.21\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we investigate certain properties of semi-totalistic cellular automata (CA) on the well known quasi-periodic kite and dart two dimensional tiling of the plane presented by Roger Penrose. We show that, despite the irregularity of the underlying grid, it is possible to devise a semi-totalistic CA capable of simulating any boolean circuit on this aperiodic tiling.\",\"PeriodicalId\":415843,\"journal\":{\"name\":\"AUTOMATA & JAC\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATA & JAC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.90.21\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATA & JAC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.90.21","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Universal Semi-totalistic Cellular Automaton on Kite and Dart Penrose Tilings
In this paper we investigate certain properties of semi-totalistic cellular automata (CA) on the well known quasi-periodic kite and dart two dimensional tiling of the plane presented by Roger Penrose. We show that, despite the irregularity of the underlying grid, it is possible to devise a semi-totalistic CA capable of simulating any boolean circuit on this aperiodic tiling.