{"title":"通过联合分布对齐的漂移适应","authors":"Bin Zhang, Jie Lu, Guangquan Zhang","doi":"10.1109/ISKE47853.2019.9170335","DOIUrl":null,"url":null,"abstract":"Machine learning in evolving environment faces challenges due to concept drift. Most concept drift adaptation methods focus on modifying the model. In this paper, a method, Drift Adaptation via Joint Distribution Alignment (DAJDA), is proposed. DAJDA performs a linear transformation to the drift instances instead of modifying model. Instances are transformed into a common feature space, reducing the discrepancy of distributions before and after drift. Experimental studies show that DAJDA has abilities to improve the performance of learning model under concept drift.","PeriodicalId":399084,"journal":{"name":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Drift Adaptation via Joint Distribution Alignment\",\"authors\":\"Bin Zhang, Jie Lu, Guangquan Zhang\",\"doi\":\"10.1109/ISKE47853.2019.9170335\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning in evolving environment faces challenges due to concept drift. Most concept drift adaptation methods focus on modifying the model. In this paper, a method, Drift Adaptation via Joint Distribution Alignment (DAJDA), is proposed. DAJDA performs a linear transformation to the drift instances instead of modifying model. Instances are transformed into a common feature space, reducing the discrepancy of distributions before and after drift. Experimental studies show that DAJDA has abilities to improve the performance of learning model under concept drift.\",\"PeriodicalId\":399084,\"journal\":{\"name\":\"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISKE47853.2019.9170335\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISKE47853.2019.9170335","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Machine learning in evolving environment faces challenges due to concept drift. Most concept drift adaptation methods focus on modifying the model. In this paper, a method, Drift Adaptation via Joint Distribution Alignment (DAJDA), is proposed. DAJDA performs a linear transformation to the drift instances instead of modifying model. Instances are transformed into a common feature space, reducing the discrepancy of distributions before and after drift. Experimental studies show that DAJDA has abilities to improve the performance of learning model under concept drift.