M. Bonyadi, S.M.R. Azghadi, N.M. Rad, K. Navi, E. Afjei
{"title":"基于遗传算法的多数门纳米电子电路逻辑优化","authors":"M. Bonyadi, S.M.R. Azghadi, N.M. Rad, K. Navi, E. Afjei","doi":"10.1109/ICEE.2007.4287307","DOIUrl":null,"url":null,"abstract":"In this paper we propose a novel and efficient method for majority gate-based design. The basic Boolean primitive in quantum cellular automata (QCA) is the majority gate. Method for reducing the number of majority gates required for computing Boolean functions is developed to facilitate the conversion of sum of products (SOP) expression into QCA majority logic. This method is based on genetic algorithm and can reduce the hardware requirements for a QCA design. We will show that the proposed approach is very efficient in deriving the simplified majority expression in QCA design.","PeriodicalId":291800,"journal":{"name":"2007 International Conference on Electrical Engineering","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"50","resultStr":"{\"title\":\"Logic Optimization for Majority Gate-Based Nanoelectronic Circuits Based on Genetic Algorithm\",\"authors\":\"M. Bonyadi, S.M.R. Azghadi, N.M. Rad, K. Navi, E. Afjei\",\"doi\":\"10.1109/ICEE.2007.4287307\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we propose a novel and efficient method for majority gate-based design. The basic Boolean primitive in quantum cellular automata (QCA) is the majority gate. Method for reducing the number of majority gates required for computing Boolean functions is developed to facilitate the conversion of sum of products (SOP) expression into QCA majority logic. This method is based on genetic algorithm and can reduce the hardware requirements for a QCA design. We will show that the proposed approach is very efficient in deriving the simplified majority expression in QCA design.\",\"PeriodicalId\":291800,\"journal\":{\"name\":\"2007 International Conference on Electrical Engineering\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"50\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEE.2007.4287307\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEE.2007.4287307","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Logic Optimization for Majority Gate-Based Nanoelectronic Circuits Based on Genetic Algorithm
In this paper we propose a novel and efficient method for majority gate-based design. The basic Boolean primitive in quantum cellular automata (QCA) is the majority gate. Method for reducing the number of majority gates required for computing Boolean functions is developed to facilitate the conversion of sum of products (SOP) expression into QCA majority logic. This method is based on genetic algorithm and can reduce the hardware requirements for a QCA design. We will show that the proposed approach is very efficient in deriving the simplified majority expression in QCA design.