Mikoto Tsunematsu, Katsuki Uno, Hideyoshi Miura, K. Hirata
{"title":"基于条件生成对抗网络的边缘计算系统服务器放置方法","authors":"Mikoto Tsunematsu, Katsuki Uno, Hideyoshi Miura, K. Hirata","doi":"10.1109/ICCE-Taiwan55306.2022.9869103","DOIUrl":null,"url":null,"abstract":"This paper proposes a server placement method with conditional generative adversarial networks (CGAN) for edge computing system design. The proposed method predicts appropriate location of edge servers without solving optimization problems by using network images for training CGAN. Through numerical evaluation, we show the effectiveness of the proposed method.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Server placement method with conditional generative adversarial networks for designing edge computing systems\",\"authors\":\"Mikoto Tsunematsu, Katsuki Uno, Hideyoshi Miura, K. Hirata\",\"doi\":\"10.1109/ICCE-Taiwan55306.2022.9869103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a server placement method with conditional generative adversarial networks (CGAN) for edge computing system design. The proposed method predicts appropriate location of edge servers without solving optimization problems by using network images for training CGAN. Through numerical evaluation, we show the effectiveness of the proposed method.\",\"PeriodicalId\":164671,\"journal\":{\"name\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Server placement method with conditional generative adversarial networks for designing edge computing systems
This paper proposes a server placement method with conditional generative adversarial networks (CGAN) for edge computing system design. The proposed method predicts appropriate location of edge servers without solving optimization problems by using network images for training CGAN. Through numerical evaluation, we show the effectiveness of the proposed method.