基于条件生成对抗网络的边缘计算系统服务器放置方法

Mikoto Tsunematsu, Katsuki Uno, Hideyoshi Miura, K. Hirata
{"title":"基于条件生成对抗网络的边缘计算系统服务器放置方法","authors":"Mikoto Tsunematsu, Katsuki Uno, Hideyoshi Miura, K. Hirata","doi":"10.1109/ICCE-Taiwan55306.2022.9869103","DOIUrl":null,"url":null,"abstract":"This paper proposes a server placement method with conditional generative adversarial networks (CGAN) for edge computing system design. The proposed method predicts appropriate location of edge servers without solving optimization problems by using network images for training CGAN. Through numerical evaluation, we show the effectiveness of the proposed method.","PeriodicalId":164671,"journal":{"name":"2022 IEEE International Conference on Consumer Electronics - Taiwan","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Server placement method with conditional generative adversarial networks for designing edge computing systems\",\"authors\":\"Mikoto Tsunematsu, Katsuki Uno, Hideyoshi Miura, K. Hirata\",\"doi\":\"10.1109/ICCE-Taiwan55306.2022.9869103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a server placement method with conditional generative adversarial networks (CGAN) for edge computing system design. The proposed method predicts appropriate location of edge servers without solving optimization problems by using network images for training CGAN. Through numerical evaluation, we show the effectiveness of the proposed method.\",\"PeriodicalId\":164671,\"journal\":{\"name\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"volume\":\"29 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE International Conference on Consumer Electronics - Taiwan\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Consumer Electronics - Taiwan","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE-Taiwan55306.2022.9869103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于条件生成对抗网络(CGAN)的服务器布局方法,用于边缘计算系统的设计。该方法利用网络图像训练CGAN,在不解决优化问题的情况下预测边缘服务器的合适位置。通过数值计算验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Server placement method with conditional generative adversarial networks for designing edge computing systems
This paper proposes a server placement method with conditional generative adversarial networks (CGAN) for edge computing system design. The proposed method predicts appropriate location of edge servers without solving optimization problems by using network images for training CGAN. Through numerical evaluation, we show the effectiveness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信