网格优化:反应扩散问题的各向异性网格还是均匀网格?

S. Khattri, S. Encheva
{"title":"网格优化:反应扩散问题的各向异性网格还是均匀网格?","authors":"S. Khattri, S. Encheva","doi":"10.1109/ICCSA.2007.63","DOIUrl":null,"url":null,"abstract":"We present a method for generating anisotropic meshes for reaction diffusion problems. A conservative finite difference method is used for discretizing reaction diffusion problems on these meshes. We compare our approach with the traditional uniform refinement technique, and show that for problems with anisotropic solution, anisotropic meshes are ideal.","PeriodicalId":386960,"journal":{"name":"2007 International Conference on Computational Science and its Applications (ICCSA 2007)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesh optimizatin : Anisotropic or Uniform Meshes for Reaction Diffusion Problems?\",\"authors\":\"S. Khattri, S. Encheva\",\"doi\":\"10.1109/ICCSA.2007.63\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a method for generating anisotropic meshes for reaction diffusion problems. A conservative finite difference method is used for discretizing reaction diffusion problems on these meshes. We compare our approach with the traditional uniform refinement technique, and show that for problems with anisotropic solution, anisotropic meshes are ideal.\",\"PeriodicalId\":386960,\"journal\":{\"name\":\"2007 International Conference on Computational Science and its Applications (ICCSA 2007)\",\"volume\":\"36 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International Conference on Computational Science and its Applications (ICCSA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCSA.2007.63\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International Conference on Computational Science and its Applications (ICCSA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSA.2007.63","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对反应扩散问题,提出了一种生成各向异性网格的方法。采用保守有限差分法对这些网格上的反应扩散问题进行离散化。我们将该方法与传统的均匀细化技术进行了比较,结果表明,对于具有各向异性解的问题,各向异性网格是理想的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mesh optimizatin : Anisotropic or Uniform Meshes for Reaction Diffusion Problems?
We present a method for generating anisotropic meshes for reaction diffusion problems. A conservative finite difference method is used for discretizing reaction diffusion problems on these meshes. We compare our approach with the traditional uniform refinement technique, and show that for problems with anisotropic solution, anisotropic meshes are ideal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信