一种用于文本分析确定职位相似度的混合机器学习方法

E. Mankolli, V. Guliashki
{"title":"一种用于文本分析确定职位相似度的混合机器学习方法","authors":"E. Mankolli, V. Guliashki","doi":"10.1109/TELSIKS52058.2021.9606341","DOIUrl":null,"url":null,"abstract":"This paper introduces a hybrid method based on the combination of two machine learning methods (k-NN and SVM). The novel method is designed to find job titles that are similar based on their description and industry. This method improves the accuracy and time-efficiency of a complex process like selecting the best candidates for a job.","PeriodicalId":228464,"journal":{"name":"2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS)","volume":"98 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Hybrid Machine Learning Method for Text Analysis to Determine Job Titles Similarity\",\"authors\":\"E. Mankolli, V. Guliashki\",\"doi\":\"10.1109/TELSIKS52058.2021.9606341\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces a hybrid method based on the combination of two machine learning methods (k-NN and SVM). The novel method is designed to find job titles that are similar based on their description and industry. This method improves the accuracy and time-efficiency of a complex process like selecting the best candidates for a job.\",\"PeriodicalId\":228464,\"journal\":{\"name\":\"2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS)\",\"volume\":\"98 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-10-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TELSIKS52058.2021.9606341\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 15th International Conference on Advanced Technologies, Systems and Services in Telecommunications (TELSIKS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TELSIKS52058.2021.9606341","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

介绍了一种基于两种机器学习方法(k-NN和SVM)相结合的混合方法。这种新颖的方法是根据职位描述和行业来查找相似的职位。这种方法提高了一个复杂过程的准确性和时间效率,比如为一份工作选择最佳候选人。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Hybrid Machine Learning Method for Text Analysis to Determine Job Titles Similarity
This paper introduces a hybrid method based on the combination of two machine learning methods (k-NN and SVM). The novel method is designed to find job titles that are similar based on their description and industry. This method improves the accuracy and time-efficiency of a complex process like selecting the best candidates for a job.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信