脉冲神经网络在雷达手势识别中的应用

Felix Kreutz, Pascal Gerhards, B. Vogginger, Klaus Knobloch, C. Mayr
{"title":"脉冲神经网络在雷达手势识别中的应用","authors":"Felix Kreutz, Pascal Gerhards, B. Vogginger, Klaus Knobloch, C. Mayr","doi":"10.1109/EBCCSP53293.2021.9502357","DOIUrl":null,"url":null,"abstract":"Spiking neural networks offer a promising approach for low power edge applications, especially when run on neuromorphic hardware. However, there are no well established approaches to setup such networks for real world applications. We demonstrate the use of spiking neural networks on the basis of radar data-based gesture recognition, while taking three different angle-encoding schemes into account, considering a two antenna based angle estimation. The surrogate gradient approach is used for direct training, while achieving a reasonable accuracy on all proposed encoding schemes. This work proposes a baseline approach for spiking networks and the corresponding encoding for the use in radar-based gesture classification.","PeriodicalId":291826,"journal":{"name":"2021 7th International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Applied Spiking Neural Networks for Radar-based Gesture Recognition\",\"authors\":\"Felix Kreutz, Pascal Gerhards, B. Vogginger, Klaus Knobloch, C. Mayr\",\"doi\":\"10.1109/EBCCSP53293.2021.9502357\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Spiking neural networks offer a promising approach for low power edge applications, especially when run on neuromorphic hardware. However, there are no well established approaches to setup such networks for real world applications. We demonstrate the use of spiking neural networks on the basis of radar data-based gesture recognition, while taking three different angle-encoding schemes into account, considering a two antenna based angle estimation. The surrogate gradient approach is used for direct training, while achieving a reasonable accuracy on all proposed encoding schemes. This work proposes a baseline approach for spiking networks and the corresponding encoding for the use in radar-based gesture classification.\",\"PeriodicalId\":291826,\"journal\":{\"name\":\"2021 7th International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EBCCSP53293.2021.9502357\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th International Conference on Event-Based Control, Communication, and Signal Processing (EBCCSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EBCCSP53293.2021.9502357","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

脉冲神经网络为低功耗边缘应用提供了一种很有前途的方法,特别是在神经形态硬件上运行时。然而,目前还没有很好的方法来为现实世界的应用程序设置这样的网络。我们演示了在基于雷达数据的手势识别的基础上使用尖峰神经网络,同时考虑了三种不同的角度编码方案,考虑了基于双天线的角度估计。代理梯度方法用于直接训练,同时在所有提出的编码方案上达到合理的精度。这项工作提出了一个峰值网络的基线方法和相应的编码,用于基于雷达的手势分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Applied Spiking Neural Networks for Radar-based Gesture Recognition
Spiking neural networks offer a promising approach for low power edge applications, especially when run on neuromorphic hardware. However, there are no well established approaches to setup such networks for real world applications. We demonstrate the use of spiking neural networks on the basis of radar data-based gesture recognition, while taking three different angle-encoding schemes into account, considering a two antenna based angle estimation. The surrogate gradient approach is used for direct training, while achieving a reasonable accuracy on all proposed encoding schemes. This work proposes a baseline approach for spiking networks and the corresponding encoding for the use in radar-based gesture classification.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信