提出了一种基于自组织神经网络的软件构件分类搜索新方法

Claudia A. S. Mello, R. Mello, M. T. P. Santos, Luciano José Senger, L. Yang
{"title":"提出了一种基于自组织神经网络的软件构件分类搜索新方法","authors":"Claudia A. S. Mello, R. Mello, M. T. P. Santos, Luciano José Senger, L. Yang","doi":"10.1109/GRC.2006.1635772","DOIUrl":null,"url":null,"abstract":"The method presented in this paper aims to simplify the construction of software component repositories. The repository makes possible the reuse of components, reducing the software implementation costs. The proposed method extracts informations from component documentation, or either, terms which compound the metadata to represent components. The components are automatically grouped, using the terms, in the repository by means of the ART-2A self- organizing artificial neural network architecture. The vectorial search strategy is used to retrieve software components which are grouped by the neural network. Experiments showed that this strategy improved the ordinary vectorial search by an average of 9.55% in precision, maintaining a similar quality in recall. This method also presented an relevant increase in the search performance.","PeriodicalId":400997,"journal":{"name":"2006 IEEE International Conference on Granular Computing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new method for classifying and searching software components by using a self-organizing neural network architecture\",\"authors\":\"Claudia A. S. Mello, R. Mello, M. T. P. Santos, Luciano José Senger, L. Yang\",\"doi\":\"10.1109/GRC.2006.1635772\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The method presented in this paper aims to simplify the construction of software component repositories. The repository makes possible the reuse of components, reducing the software implementation costs. The proposed method extracts informations from component documentation, or either, terms which compound the metadata to represent components. The components are automatically grouped, using the terms, in the repository by means of the ART-2A self- organizing artificial neural network architecture. The vectorial search strategy is used to retrieve software components which are grouped by the neural network. Experiments showed that this strategy improved the ordinary vectorial search by an average of 9.55% in precision, maintaining a similar quality in recall. This method also presented an relevant increase in the search performance.\",\"PeriodicalId\":400997,\"journal\":{\"name\":\"2006 IEEE International Conference on Granular Computing\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 IEEE International Conference on Granular Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/GRC.2006.1635772\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2006.1635772","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文提出的方法旨在简化软件组件库的构建。存储库使组件的重用成为可能,从而降低了软件实现成本。所提出的方法从组件文档或组合元数据以表示组件的术语中提取信息。通过ART-2A自组织人工神经网络架构,在存储库中使用术语自动分组组件。采用向量搜索策略检索由神经网络分组的软件组件。实验表明,该策略比普通向量搜索的准确率平均提高了9.55%,在召回率上保持了相似的质量。该方法在搜索性能上也有相应的提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A new method for classifying and searching software components by using a self-organizing neural network architecture
The method presented in this paper aims to simplify the construction of software component repositories. The repository makes possible the reuse of components, reducing the software implementation costs. The proposed method extracts informations from component documentation, or either, terms which compound the metadata to represent components. The components are automatically grouped, using the terms, in the repository by means of the ART-2A self- organizing artificial neural network architecture. The vectorial search strategy is used to retrieve software components which are grouped by the neural network. Experiments showed that this strategy improved the ordinary vectorial search by an average of 9.55% in precision, maintaining a similar quality in recall. This method also presented an relevant increase in the search performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信