急诊部门管理的机器学习

Sofia Benbelkacem, F. Kadri, B. Atmani, S. Chaabane
{"title":"急诊部门管理的机器学习","authors":"Sofia Benbelkacem, F. Kadri, B. Atmani, S. Chaabane","doi":"10.4018/IJISSS.2019070102","DOIUrl":null,"url":null,"abstract":"Nowadays, emergency department services are confronted to an increasing demand. This situation causes emergency department overcrowding which often increases the length of stay of patients and leads to strain situations. To overcome this issue, emergency department managers must predict the length of stay. In this work, the researchers propose to use machine learning techniques to set up a methodology that supports the management of emergency departments (EDs). The target of this work is to predict the length of stay of patients in the ED in order to prevent strain situations. The experiments were carried out on a real database collected from the pediatric emergency department (PED) in Lille regional hospital center, France. Different machine learning techniques have been used to build the best prediction models. The results seem better with Naive Bayes, C4.5 and SVM methods. In addition, the models based on a subset of attributes proved to be more efficient than models based on the set of attributes.","PeriodicalId":151306,"journal":{"name":"Int. J. Inf. Syst. Serv. Sect.","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Machine Learning for Emergency Department Management\",\"authors\":\"Sofia Benbelkacem, F. Kadri, B. Atmani, S. Chaabane\",\"doi\":\"10.4018/IJISSS.2019070102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nowadays, emergency department services are confronted to an increasing demand. This situation causes emergency department overcrowding which often increases the length of stay of patients and leads to strain situations. To overcome this issue, emergency department managers must predict the length of stay. In this work, the researchers propose to use machine learning techniques to set up a methodology that supports the management of emergency departments (EDs). The target of this work is to predict the length of stay of patients in the ED in order to prevent strain situations. The experiments were carried out on a real database collected from the pediatric emergency department (PED) in Lille regional hospital center, France. Different machine learning techniques have been used to build the best prediction models. The results seem better with Naive Bayes, C4.5 and SVM methods. In addition, the models based on a subset of attributes proved to be more efficient than models based on the set of attributes.\",\"PeriodicalId\":151306,\"journal\":{\"name\":\"Int. J. Inf. Syst. Serv. Sect.\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Inf. Syst. Serv. Sect.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJISSS.2019070102\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Inf. Syst. Serv. Sect.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJISSS.2019070102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

目前,急诊科服务面临着日益增长的需求。这种情况导致急诊科人满为患,往往增加病人的住院时间,导致紧张的情况。为了克服这个问题,急诊科经理必须预测病人的住院时间。在这项工作中,研究人员建议使用机器学习技术来建立一种支持急诊科管理的方法。这项工作的目标是预测病人在急诊科的停留时间,以防止紧张情况。实验是在法国里尔地区医院中心儿科急诊科(PED)收集的真实数据库上进行的。不同的机器学习技术被用来建立最好的预测模型。使用朴素贝叶斯、C4.5和支持向量机的结果更好。此外,基于属性子集的模型被证明比基于属性集的模型更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning for Emergency Department Management
Nowadays, emergency department services are confronted to an increasing demand. This situation causes emergency department overcrowding which often increases the length of stay of patients and leads to strain situations. To overcome this issue, emergency department managers must predict the length of stay. In this work, the researchers propose to use machine learning techniques to set up a methodology that supports the management of emergency departments (EDs). The target of this work is to predict the length of stay of patients in the ED in order to prevent strain situations. The experiments were carried out on a real database collected from the pediatric emergency department (PED) in Lille regional hospital center, France. Different machine learning techniques have been used to build the best prediction models. The results seem better with Naive Bayes, C4.5 and SVM methods. In addition, the models based on a subset of attributes proved to be more efficient than models based on the set of attributes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信