一种基于语义感知的空间文本查询方案

Hongbo Li, Hong Zhu, Zongmin Cui
{"title":"一种基于语义感知的空间文本查询方案","authors":"Hongbo Li, Hong Zhu, Zongmin Cui","doi":"10.1145/3318265.3319613","DOIUrl":null,"url":null,"abstract":"In some application scenarios, the strategy based on text similarity cannot accurately find the spatial text data that users need. Therefore, we propose a spatial text query scheme based on semantic-aware. We name this scheme as SSA. We study spatial text queries based on semantic-aware. We improve LDA algorithm to filter out some worthless candidate data. The experimental results show that our scheme has good basic attributes and query accuracy.","PeriodicalId":241692,"journal":{"name":"Proceedings of the 3rd International Conference on High Performance Compilation, Computing and Communications","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A spatial text query scheme based on semantic-aware\",\"authors\":\"Hongbo Li, Hong Zhu, Zongmin Cui\",\"doi\":\"10.1145/3318265.3319613\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In some application scenarios, the strategy based on text similarity cannot accurately find the spatial text data that users need. Therefore, we propose a spatial text query scheme based on semantic-aware. We name this scheme as SSA. We study spatial text queries based on semantic-aware. We improve LDA algorithm to filter out some worthless candidate data. The experimental results show that our scheme has good basic attributes and query accuracy.\",\"PeriodicalId\":241692,\"journal\":{\"name\":\"Proceedings of the 3rd International Conference on High Performance Compilation, Computing and Communications\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 3rd International Conference on High Performance Compilation, Computing and Communications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3318265.3319613\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 3rd International Conference on High Performance Compilation, Computing and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3318265.3319613","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在某些应用场景中,基于文本相似度的策略不能准确地找到用户需要的空间文本数据。为此,我们提出了一种基于语义感知的空间文本查询方案。我们将此方案命名为SSA。我们研究了基于语义感知的空间文本查询。我们改进了LDA算法,过滤掉一些无用的候选数据。实验结果表明,该方案具有良好的基本属性和查询精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A spatial text query scheme based on semantic-aware
In some application scenarios, the strategy based on text similarity cannot accurately find the spatial text data that users need. Therefore, we propose a spatial text query scheme based on semantic-aware. We name this scheme as SSA. We study spatial text queries based on semantic-aware. We improve LDA algorithm to filter out some worthless candidate data. The experimental results show that our scheme has good basic attributes and query accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信