离散时间饱和系统凸集不变性的充分必要条件

M. Fiacchini, C. Prieur, S. Tarbouriech
{"title":"离散时间饱和系统凸集不变性的充分必要条件","authors":"M. Fiacchini, C. Prieur, S. Tarbouriech","doi":"10.1109/CDC.2013.6760467","DOIUrl":null,"url":null,"abstract":"A convex analysis-based characterization of invariance and contractivity of compact convex sets for discretetime saturated systems is presented. Necessary and sufficient conditions for the existence of convex set-induced Lyapunov functions is provided. The results generalize the quadratic Lyapunov theory for saturated systems, apply also to asymmetric saturations and can be extended to affine nonlinearity maps. A numerical example illustrates the improvements of our method with respect to other classical ones.","PeriodicalId":415568,"journal":{"name":"52nd IEEE Conference on Decision and Control","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Necessary and sufficient conditions for invariance of convex sets for discrete-time saturated systems\",\"authors\":\"M. Fiacchini, C. Prieur, S. Tarbouriech\",\"doi\":\"10.1109/CDC.2013.6760467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A convex analysis-based characterization of invariance and contractivity of compact convex sets for discretetime saturated systems is presented. Necessary and sufficient conditions for the existence of convex set-induced Lyapunov functions is provided. The results generalize the quadratic Lyapunov theory for saturated systems, apply also to asymmetric saturations and can be extended to affine nonlinearity maps. A numerical example illustrates the improvements of our method with respect to other classical ones.\",\"PeriodicalId\":415568,\"journal\":{\"name\":\"52nd IEEE Conference on Decision and Control\",\"volume\":\"15 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"52nd IEEE Conference on Decision and Control\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CDC.2013.6760467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"52nd IEEE Conference on Decision and Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CDC.2013.6760467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

给出了离散时间饱和系统紧凸集的不变性和收缩性的凸分析表征。给出了凸集诱导Lyapunov函数存在的充分必要条件。结果推广了饱和系统的二次Lyapunov理论,也适用于不对称饱和,并可以推广到仿射非线性映射。数值算例说明了本文方法相对于其他经典方法的改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Necessary and sufficient conditions for invariance of convex sets for discrete-time saturated systems
A convex analysis-based characterization of invariance and contractivity of compact convex sets for discretetime saturated systems is presented. Necessary and sufficient conditions for the existence of convex set-induced Lyapunov functions is provided. The results generalize the quadratic Lyapunov theory for saturated systems, apply also to asymmetric saturations and can be extended to affine nonlinearity maps. A numerical example illustrates the improvements of our method with respect to other classical ones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信