基于鲁棒线性判别分析模型的随机投影人脸识别

Ying-Han Pang, A. Teoh
{"title":"基于鲁棒线性判别分析模型的随机投影人脸识别","authors":"Ying-Han Pang, A. Teoh","doi":"10.1109/CGIV.2007.70","DOIUrl":null,"url":null,"abstract":"This paper presents a face recognition technique with two techniques: random projection (RP) and robust linear discriminant analysis model (RDM). RDM is an enhanced version of fisher's linear discriminant with energy-adaptive regularization criteria. It is able to yield better discrimination performance. Same as Fisher's Linear Discriminant, it also faces the singularity problem of within-class scatter. Thus, a dimensionality reduction technique, such as principal component analysis (PCA), is needed to deal with this problem. In this paper, RP is used as an alternative to PCA in RDM in the application of face recognition. Unlike PCA, RP is training data independent and the random subspace computation is relatively simple. The experimental results illustrate that the proposed algorithm is able to attain better recognition performance (error rate is approximately 5% lower) compared to Fisherfaces.","PeriodicalId":433577,"journal":{"name":"Computer Graphics, Imaging and Visualisation (CGIV 2007)","volume":"419 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Random Projection with Robust Linear Discriminant Analysis Model in Face Recognition\",\"authors\":\"Ying-Han Pang, A. Teoh\",\"doi\":\"10.1109/CGIV.2007.70\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a face recognition technique with two techniques: random projection (RP) and robust linear discriminant analysis model (RDM). RDM is an enhanced version of fisher's linear discriminant with energy-adaptive regularization criteria. It is able to yield better discrimination performance. Same as Fisher's Linear Discriminant, it also faces the singularity problem of within-class scatter. Thus, a dimensionality reduction technique, such as principal component analysis (PCA), is needed to deal with this problem. In this paper, RP is used as an alternative to PCA in RDM in the application of face recognition. Unlike PCA, RP is training data independent and the random subspace computation is relatively simple. The experimental results illustrate that the proposed algorithm is able to attain better recognition performance (error rate is approximately 5% lower) compared to Fisherfaces.\",\"PeriodicalId\":433577,\"journal\":{\"name\":\"Computer Graphics, Imaging and Visualisation (CGIV 2007)\",\"volume\":\"419 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Graphics, Imaging and Visualisation (CGIV 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CGIV.2007.70\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Graphics, Imaging and Visualisation (CGIV 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CGIV.2007.70","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文提出了一种基于随机投影和鲁棒线性判别分析模型的人脸识别技术。RDM是fisher线性判别法的增强版,带有能量自适应正则化准则。它能够产生更好的识别性能。与Fisher线性判别法一样,它也面临类内散射的奇异性问题。因此,需要一种降维技术,如主成分分析(PCA)来处理这个问题。本文将RP作为RDM中PCA的替代方法在人脸识别中的应用。与PCA不同,RP与训练数据无关,并且随机子空间的计算相对简单。实验结果表明,与fishfaces相比,该算法能够获得更好的识别性能(错误率降低约5%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Random Projection with Robust Linear Discriminant Analysis Model in Face Recognition
This paper presents a face recognition technique with two techniques: random projection (RP) and robust linear discriminant analysis model (RDM). RDM is an enhanced version of fisher's linear discriminant with energy-adaptive regularization criteria. It is able to yield better discrimination performance. Same as Fisher's Linear Discriminant, it also faces the singularity problem of within-class scatter. Thus, a dimensionality reduction technique, such as principal component analysis (PCA), is needed to deal with this problem. In this paper, RP is used as an alternative to PCA in RDM in the application of face recognition. Unlike PCA, RP is training data independent and the random subspace computation is relatively simple. The experimental results illustrate that the proposed algorithm is able to attain better recognition performance (error rate is approximately 5% lower) compared to Fisherfaces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信