可计算平面平铺的局部规则

AUTOMATA & JAC Pub Date : 2012-08-14 DOI:10.4204/EPTCS.90.11
Thomas Fernique, M. Sablik
{"title":"可计算平面平铺的局部规则","authors":"Thomas Fernique, M. Sablik","doi":"10.4204/EPTCS.90.11","DOIUrl":null,"url":null,"abstract":"Aperiodic tilings are non-periodic tilings characterized by local constraints. They play a key role in the proof of the undecidability of the domino problem (1964) and naturally model quasicrystals (discovered in 1982). A central question is to characterize, among a class of non-periodic tilings, the aperiodic ones. In this paper, we answer this question for the well-studied class of non-periodic tilings obtained by digitizing irrational vector spaces. Namely, we prove that such tilings are aperiodic if and only if the digitized vector spaces are computable.","PeriodicalId":415843,"journal":{"name":"AUTOMATA & JAC","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Local Rules for Computable Planar Tilings\",\"authors\":\"Thomas Fernique, M. Sablik\",\"doi\":\"10.4204/EPTCS.90.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aperiodic tilings are non-periodic tilings characterized by local constraints. They play a key role in the proof of the undecidability of the domino problem (1964) and naturally model quasicrystals (discovered in 1982). A central question is to characterize, among a class of non-periodic tilings, the aperiodic ones. In this paper, we answer this question for the well-studied class of non-periodic tilings obtained by digitizing irrational vector spaces. Namely, we prove that such tilings are aperiodic if and only if the digitized vector spaces are computable.\",\"PeriodicalId\":415843,\"journal\":{\"name\":\"AUTOMATA & JAC\",\"volume\":\"16 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATA & JAC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.90.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATA & JAC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.90.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

非周期铺层是具有局部约束的非周期铺层。它们在证明多米诺骨牌问题的不可判定性(1964年)和自然模型准晶体(1982年发现)中发挥了关键作用。一个中心问题是,在一类非周期平铺中,对非周期平铺进行表征。在本文中,我们回答了这一问题的非周期平铺,这类平铺是通过对无理性向量空间进行数字化而得到的。也就是说,我们证明了当且仅当数字化向量空间是可计算的,这样的平铺是非周期的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Local Rules for Computable Planar Tilings
Aperiodic tilings are non-periodic tilings characterized by local constraints. They play a key role in the proof of the undecidability of the domino problem (1964) and naturally model quasicrystals (discovered in 1982). A central question is to characterize, among a class of non-periodic tilings, the aperiodic ones. In this paper, we answer this question for the well-studied class of non-periodic tilings obtained by digitizing irrational vector spaces. Namely, we prove that such tilings are aperiodic if and only if the digitized vector spaces are computable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信