{"title":"癫痫发作预测的患者特异分类与一般分类的比较","authors":"Yasmin M. Massoud, L. Kuhlmann, M. A. E. Ghany","doi":"10.1109/ICM52667.2021.9664932","DOIUrl":null,"url":null,"abstract":"Epilepsy is a neurological disorder in which abnormal brain activity occurs, causing seizures. Recent studies have used machine learning techniques to produce a seizure classification system. In this work, two aspects of seizure classification are discussed and compared in terms of accuracy and efficacy. Seizure classification can follow a patient specific or general approach. For a patient specific approach, feature extraction and classification are performed for each patient independently. However, a general approach means data is trained and classified for all patients at once. Results show that AUC of general approach is 0.74 which is higher than that of patient-specific 0.71. Computational time is decreased when using patient-specific approach to 8 hours, while general approach requires 10 hours for training and prediction.","PeriodicalId":212613,"journal":{"name":"2021 International Conference on Microelectronics (ICM)","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Comparison of Patient Specific and General Classification of Epileptic Seizure Prediction\",\"authors\":\"Yasmin M. Massoud, L. Kuhlmann, M. A. E. Ghany\",\"doi\":\"10.1109/ICM52667.2021.9664932\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epilepsy is a neurological disorder in which abnormal brain activity occurs, causing seizures. Recent studies have used machine learning techniques to produce a seizure classification system. In this work, two aspects of seizure classification are discussed and compared in terms of accuracy and efficacy. Seizure classification can follow a patient specific or general approach. For a patient specific approach, feature extraction and classification are performed for each patient independently. However, a general approach means data is trained and classified for all patients at once. Results show that AUC of general approach is 0.74 which is higher than that of patient-specific 0.71. Computational time is decreased when using patient-specific approach to 8 hours, while general approach requires 10 hours for training and prediction.\",\"PeriodicalId\":212613,\"journal\":{\"name\":\"2021 International Conference on Microelectronics (ICM)\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Conference on Microelectronics (ICM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICM52667.2021.9664932\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Microelectronics (ICM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICM52667.2021.9664932","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Comparison of Patient Specific and General Classification of Epileptic Seizure Prediction
Epilepsy is a neurological disorder in which abnormal brain activity occurs, causing seizures. Recent studies have used machine learning techniques to produce a seizure classification system. In this work, two aspects of seizure classification are discussed and compared in terms of accuracy and efficacy. Seizure classification can follow a patient specific or general approach. For a patient specific approach, feature extraction and classification are performed for each patient independently. However, a general approach means data is trained and classified for all patients at once. Results show that AUC of general approach is 0.74 which is higher than that of patient-specific 0.71. Computational time is decreased when using patient-specific approach to 8 hours, while general approach requires 10 hours for training and prediction.