{"title":"基于集成轨迹的摆机器人运动控制策略","authors":"Lejun Wang, X. Lai, P. Zhang, Min Wu","doi":"10.23919/ecc54610.2021.9654846","DOIUrl":null,"url":null,"abstract":"The control objective of a Pendubot is always to swing its endpoint up from the vertical downward equilibrium point (VDEP) and to stay it at the vertical upward equilibrium point (VUEP). This paper proposes a motion control approach based on the integrated trajectory to achieve the above control objective with only one controller. First, an integration trajectory with two parts is designed for the Pendubot. We plan the first part trajectory with variable parameters, and optimize these variable parameters by applying the genetic algorithm (GA) to make all links move simultaneously from their starting states to their target states. We plan the second part trajectory to make all links remain at the target states. Then, we build the linear time-varying error system based on the integration trajectory, and design a global tracking controller by using the linear system control method to track the integration trajectory. By this way, the control objective of the Pendubot is realized. Finally, the simulations illustrate the validity and superiority of the proposed method.","PeriodicalId":105499,"journal":{"name":"2021 European Control Conference (ECC)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Motion Control Strategy Based on Integrated Trajectory for the Pendubot\",\"authors\":\"Lejun Wang, X. Lai, P. Zhang, Min Wu\",\"doi\":\"10.23919/ecc54610.2021.9654846\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The control objective of a Pendubot is always to swing its endpoint up from the vertical downward equilibrium point (VDEP) and to stay it at the vertical upward equilibrium point (VUEP). This paper proposes a motion control approach based on the integrated trajectory to achieve the above control objective with only one controller. First, an integration trajectory with two parts is designed for the Pendubot. We plan the first part trajectory with variable parameters, and optimize these variable parameters by applying the genetic algorithm (GA) to make all links move simultaneously from their starting states to their target states. We plan the second part trajectory to make all links remain at the target states. Then, we build the linear time-varying error system based on the integration trajectory, and design a global tracking controller by using the linear system control method to track the integration trajectory. By this way, the control objective of the Pendubot is realized. Finally, the simulations illustrate the validity and superiority of the proposed method.\",\"PeriodicalId\":105499,\"journal\":{\"name\":\"2021 European Control Conference (ECC)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 European Control Conference (ECC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ecc54610.2021.9654846\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 European Control Conference (ECC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ecc54610.2021.9654846","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Motion Control Strategy Based on Integrated Trajectory for the Pendubot
The control objective of a Pendubot is always to swing its endpoint up from the vertical downward equilibrium point (VDEP) and to stay it at the vertical upward equilibrium point (VUEP). This paper proposes a motion control approach based on the integrated trajectory to achieve the above control objective with only one controller. First, an integration trajectory with two parts is designed for the Pendubot. We plan the first part trajectory with variable parameters, and optimize these variable parameters by applying the genetic algorithm (GA) to make all links move simultaneously from their starting states to their target states. We plan the second part trajectory to make all links remain at the target states. Then, we build the linear time-varying error system based on the integration trajectory, and design a global tracking controller by using the linear system control method to track the integration trajectory. By this way, the control objective of the Pendubot is realized. Finally, the simulations illustrate the validity and superiority of the proposed method.