解决金融交易和实时多媒体应用的机器学习优势修剪

Benjamin Wan-Sang Wah
{"title":"解决金融交易和实时多媒体应用的机器学习优势修剪","authors":"Benjamin Wan-Sang Wah","doi":"10.11648/j.ajai.20220602.12","DOIUrl":null,"url":null,"abstract":": This paper presents the design of dominance relations to reduce the space traversed in machine learning for solving two applications in financial trading and real-time multimedia. A machine-learning algorithm designed for an application with a huge search space will need to perform an efficient traversal of the space during learning. It will be more effective if it employs a powerful pruning mechanism to eliminate suboptimal candidates before using them in the learning algorithm. In our approach, we present dominance relations for pruning subspaces with suboptimal kernels that are otherwise evaluated in learning, where kernels represent the statistical quality, average density","PeriodicalId":404597,"journal":{"name":"American Journal of Artificial Intelligence","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dominance Pruning in Machine Learning for Solving Financial Trading and Real-Time Multimedia Applications\",\"authors\":\"Benjamin Wan-Sang Wah\",\"doi\":\"10.11648/j.ajai.20220602.12\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": This paper presents the design of dominance relations to reduce the space traversed in machine learning for solving two applications in financial trading and real-time multimedia. A machine-learning algorithm designed for an application with a huge search space will need to perform an efficient traversal of the space during learning. It will be more effective if it employs a powerful pruning mechanism to eliminate suboptimal candidates before using them in the learning algorithm. In our approach, we present dominance relations for pruning subspaces with suboptimal kernels that are otherwise evaluated in learning, where kernels represent the statistical quality, average density\",\"PeriodicalId\":404597,\"journal\":{\"name\":\"American Journal of Artificial Intelligence\",\"volume\":\"22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"American Journal of Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.11648/j.ajai.20220602.12\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"American Journal of Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11648/j.ajai.20220602.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了解决金融交易和实时多媒体两种机器学习应用,本文提出了优势关系的设计,以减少机器学习中遍历的空间。为具有巨大搜索空间的应用程序设计的机器学习算法需要在学习过程中执行有效的空间遍历。如果在学习算法中使用次优候选对象之前,采用强大的剪枝机制来剔除次优候选对象,将会更加有效。在我们的方法中,我们提出了具有次优核的修剪子空间的优势关系,这些次优核在学习中被评估,其中核代表统计质量,平均密度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dominance Pruning in Machine Learning for Solving Financial Trading and Real-Time Multimedia Applications
: This paper presents the design of dominance relations to reduce the space traversed in machine learning for solving two applications in financial trading and real-time multimedia. A machine-learning algorithm designed for an application with a huge search space will need to perform an efficient traversal of the space during learning. It will be more effective if it employs a powerful pruning mechanism to eliminate suboptimal candidates before using them in the learning algorithm. In our approach, we present dominance relations for pruning subspaces with suboptimal kernels that are otherwise evaluated in learning, where kernels represent the statistical quality, average density
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信