基于极坐标的大规模动态拼车匹配策略

Jiyao Li, V. Allan
{"title":"基于极坐标的大规模动态拼车匹配策略","authors":"Jiyao Li, V. Allan","doi":"10.1109/SMARTCOMP.2019.00086","DOIUrl":null,"url":null,"abstract":"In this paper, we study a challenging problem of how to pool multiple ride-share trip requests in real time under an uncertain environment. The goals are better performance metrics of efficiency and acceptable satisfaction of riders. To solve the problem effectively, an objective function that compromises the benefits and losses of dynamic ridesharing service is proposed. The Polar Coordinates based Ride-Matching strategy (PCRM) that can adapt to the satisfaction of riders on board is also addressed. In the experiment, large scale data sets from New York City (NYC) are applied. We do a case study to identify the best set of parameters of the dynamic ridesharing service with a training set of 135,252 trip requests. In addition, we also use a testing set containing 427,799 trip requests and two state-of-the-art approaches as baselines to estimate the effectiveness of our method. The experimental results show that on average 38% of traveling distance can be saved, nearly 100% of passengers can be served and each rider only spends an additional 3.8 minutes in ridesharing trips compared to single rider service.","PeriodicalId":253364,"journal":{"name":"2019 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"52 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A Ride-Matching Strategy For Large Scale Dynamic Ridesharing Services Based on Polar Coordinates\",\"authors\":\"Jiyao Li, V. Allan\",\"doi\":\"10.1109/SMARTCOMP.2019.00086\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study a challenging problem of how to pool multiple ride-share trip requests in real time under an uncertain environment. The goals are better performance metrics of efficiency and acceptable satisfaction of riders. To solve the problem effectively, an objective function that compromises the benefits and losses of dynamic ridesharing service is proposed. The Polar Coordinates based Ride-Matching strategy (PCRM) that can adapt to the satisfaction of riders on board is also addressed. In the experiment, large scale data sets from New York City (NYC) are applied. We do a case study to identify the best set of parameters of the dynamic ridesharing service with a training set of 135,252 trip requests. In addition, we also use a testing set containing 427,799 trip requests and two state-of-the-art approaches as baselines to estimate the effectiveness of our method. The experimental results show that on average 38% of traveling distance can be saved, nearly 100% of passengers can be served and each rider only spends an additional 3.8 minutes in ridesharing trips compared to single rider service.\",\"PeriodicalId\":253364,\"journal\":{\"name\":\"2019 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"volume\":\"52 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Conference on Smart Computing (SMARTCOMP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SMARTCOMP.2019.00086\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP.2019.00086","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文研究了一个具有挑战性的问题,即在不确定环境下,如何实时地将多个拼车请求集中在一起。目标是提高效率的性能指标和乘客可接受的满意度。为了有效地解决这一问题,提出了一个权衡动态拼车服务收益与损失的目标函数。本文还讨论了基于极坐标的乘车匹配策略(PCRM),该策略可以适应乘客的满意度。在实验中,应用了来自纽约市(NYC)的大规模数据集。我们做了一个案例研究,用135,252个旅行请求的训练集来确定动态拼车服务的最佳参数集。此外,我们还使用包含427,799个行程请求的测试集和两种最先进的方法作为基线来估计我们方法的有效性。实验结果表明,平均节省38%的出行距离,近100%的乘客可以得到服务,与单乘客服务相比,每位乘客仅多花费3.8分钟的出行时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Ride-Matching Strategy For Large Scale Dynamic Ridesharing Services Based on Polar Coordinates
In this paper, we study a challenging problem of how to pool multiple ride-share trip requests in real time under an uncertain environment. The goals are better performance metrics of efficiency and acceptable satisfaction of riders. To solve the problem effectively, an objective function that compromises the benefits and losses of dynamic ridesharing service is proposed. The Polar Coordinates based Ride-Matching strategy (PCRM) that can adapt to the satisfaction of riders on board is also addressed. In the experiment, large scale data sets from New York City (NYC) are applied. We do a case study to identify the best set of parameters of the dynamic ridesharing service with a training set of 135,252 trip requests. In addition, we also use a testing set containing 427,799 trip requests and two state-of-the-art approaches as baselines to estimate the effectiveness of our method. The experimental results show that on average 38% of traveling distance can be saved, nearly 100% of passengers can be served and each rider only spends an additional 3.8 minutes in ridesharing trips compared to single rider service.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信