约束多目标优化的MOEA/D:一些初步实验结果

Muhammad Asif Jan, Qingfu Zhang
{"title":"约束多目标优化的MOEA/D:一些初步实验结果","authors":"Muhammad Asif Jan, Qingfu Zhang","doi":"10.1109/UKCI.2010.5625585","DOIUrl":null,"url":null,"abstract":"This paper modifies the replacement and update scheme in MOEA/D-DE developed in [1] for dealing with constraints in multiobjective optimization problems. The modified scheme introduces a penalty function to penalize infeasible solutions. The penalty function uses a threshold to control the amount of penalty to infeasible solutions. Experimental results have shown that this penalty method is very promising.","PeriodicalId":403291,"journal":{"name":"2010 UK Workshop on Computational Intelligence (UKCI)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":"{\"title\":\"MOEA/D for constrained multiobjective optimization: Some preliminary experimental results\",\"authors\":\"Muhammad Asif Jan, Qingfu Zhang\",\"doi\":\"10.1109/UKCI.2010.5625585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper modifies the replacement and update scheme in MOEA/D-DE developed in [1] for dealing with constraints in multiobjective optimization problems. The modified scheme introduces a penalty function to penalize infeasible solutions. The penalty function uses a threshold to control the amount of penalty to infeasible solutions. Experimental results have shown that this penalty method is very promising.\",\"PeriodicalId\":403291,\"journal\":{\"name\":\"2010 UK Workshop on Computational Intelligence (UKCI)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"82\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 UK Workshop on Computational Intelligence (UKCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKCI.2010.5625585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2010.5625585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 82

摘要

本文对[1]中开发的MOEA/D-DE中的替换和更新方案进行了修改,以处理多目标优化问题中的约束。改进后的方案引入了一个惩罚函数来惩罚不可行的解。惩罚函数使用阈值来控制对不可行解的惩罚量。实验结果表明,这种惩罚方法是很有前途的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MOEA/D for constrained multiobjective optimization: Some preliminary experimental results
This paper modifies the replacement and update scheme in MOEA/D-DE developed in [1] for dealing with constraints in multiobjective optimization problems. The modified scheme introduces a penalty function to penalize infeasible solutions. The penalty function uses a threshold to control the amount of penalty to infeasible solutions. Experimental results have shown that this penalty method is very promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信