{"title":"约束多目标优化的MOEA/D:一些初步实验结果","authors":"Muhammad Asif Jan, Qingfu Zhang","doi":"10.1109/UKCI.2010.5625585","DOIUrl":null,"url":null,"abstract":"This paper modifies the replacement and update scheme in MOEA/D-DE developed in [1] for dealing with constraints in multiobjective optimization problems. The modified scheme introduces a penalty function to penalize infeasible solutions. The penalty function uses a threshold to control the amount of penalty to infeasible solutions. Experimental results have shown that this penalty method is very promising.","PeriodicalId":403291,"journal":{"name":"2010 UK Workshop on Computational Intelligence (UKCI)","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"82","resultStr":"{\"title\":\"MOEA/D for constrained multiobjective optimization: Some preliminary experimental results\",\"authors\":\"Muhammad Asif Jan, Qingfu Zhang\",\"doi\":\"10.1109/UKCI.2010.5625585\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper modifies the replacement and update scheme in MOEA/D-DE developed in [1] for dealing with constraints in multiobjective optimization problems. The modified scheme introduces a penalty function to penalize infeasible solutions. The penalty function uses a threshold to control the amount of penalty to infeasible solutions. Experimental results have shown that this penalty method is very promising.\",\"PeriodicalId\":403291,\"journal\":{\"name\":\"2010 UK Workshop on Computational Intelligence (UKCI)\",\"volume\":\"38 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"82\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 UK Workshop on Computational Intelligence (UKCI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UKCI.2010.5625585\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 UK Workshop on Computational Intelligence (UKCI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UKCI.2010.5625585","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
MOEA/D for constrained multiobjective optimization: Some preliminary experimental results
This paper modifies the replacement and update scheme in MOEA/D-DE developed in [1] for dealing with constraints in multiobjective optimization problems. The modified scheme introduces a penalty function to penalize infeasible solutions. The penalty function uses a threshold to control the amount of penalty to infeasible solutions. Experimental results have shown that this penalty method is very promising.