基于现场感知分解机的电子商务商品推荐

Peng Yan, Xiaocong Zhou, Yitao Duan
{"title":"基于现场感知分解机的电子商务商品推荐","authors":"Peng Yan, Xiaocong Zhou, Yitao Duan","doi":"10.1145/2813448.2813511","DOIUrl":null,"url":null,"abstract":"The RecSys 2015 contest [1] seeks the best solution to a top-N e-commerce item recommendation problem. This paper describes the team Random Walker's approach to this challenge, which won the 3rd place in the contest. Our solution consists of the following components. Firstly, we cast the top-N recommendation task into a binary classification problem and extract original features from the raw data. Secondly, we learn derived features using field-aware factorization machines (FFM) and gradient boosting decision tree (GBDT). Lastly, we train 2 FFM models with different feature sets and combine them by a non-linear weighted blending. This solution is the result of numerous tests and the scheme turns out to be effective. Our final solution achieved a score of 61075.2, ranking in the third place on the public leaderboard.","PeriodicalId":324873,"journal":{"name":"Proceedings of the 2015 International ACM Recommender Systems Challenge","volume":"IA-21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"E-Commerce Item Recommendation Based on Field-aware Factorization Machine\",\"authors\":\"Peng Yan, Xiaocong Zhou, Yitao Duan\",\"doi\":\"10.1145/2813448.2813511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The RecSys 2015 contest [1] seeks the best solution to a top-N e-commerce item recommendation problem. This paper describes the team Random Walker's approach to this challenge, which won the 3rd place in the contest. Our solution consists of the following components. Firstly, we cast the top-N recommendation task into a binary classification problem and extract original features from the raw data. Secondly, we learn derived features using field-aware factorization machines (FFM) and gradient boosting decision tree (GBDT). Lastly, we train 2 FFM models with different feature sets and combine them by a non-linear weighted blending. This solution is the result of numerous tests and the scheme turns out to be effective. Our final solution achieved a score of 61075.2, ranking in the third place on the public leaderboard.\",\"PeriodicalId\":324873,\"journal\":{\"name\":\"Proceedings of the 2015 International ACM Recommender Systems Challenge\",\"volume\":\"IA-21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-09-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2015 International ACM Recommender Systems Challenge\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/2813448.2813511\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2015 International ACM Recommender Systems Challenge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2813448.2813511","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

摘要

RecSys 2015竞赛[1]寻求前n位电子商务商品推荐问题的最佳解决方案。本文描述了Random Walker团队应对这一挑战的方法,该团队在比赛中获得了第三名。我们的解决方案由以下组件组成。首先,将top-N推荐任务转化为二值分类问题,从原始数据中提取原始特征;其次,我们使用场感知分解机(FFM)和梯度增强决策树(GBDT)来学习衍生特征。最后,我们训练了两个具有不同特征集的FFM模型,并通过非线性加权混合将它们组合在一起。该方案经过多次试验,证明是有效的。我们的最终解决方案获得了61075.2的分数,在公共排行榜上排名第三。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
E-Commerce Item Recommendation Based on Field-aware Factorization Machine
The RecSys 2015 contest [1] seeks the best solution to a top-N e-commerce item recommendation problem. This paper describes the team Random Walker's approach to this challenge, which won the 3rd place in the contest. Our solution consists of the following components. Firstly, we cast the top-N recommendation task into a binary classification problem and extract original features from the raw data. Secondly, we learn derived features using field-aware factorization machines (FFM) and gradient boosting decision tree (GBDT). Lastly, we train 2 FFM models with different feature sets and combine them by a non-linear weighted blending. This solution is the result of numerous tests and the scheme turns out to be effective. Our final solution achieved a score of 61075.2, ranking in the third place on the public leaderboard.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信