{"title":"基于卷积神经网络的三角CRF联合意图检测与缝隙填充","authors":"Puyang Xu, R. Sarikaya","doi":"10.1109/ASRU.2013.6707709","DOIUrl":null,"url":null,"abstract":"We describe a joint model for intent detection and slot filling based on convolutional neural networks (CNN). The proposed architecture can be perceived as a neural network (NN) version of the triangular CRF model (TriCRF), in which the intent label and the slot sequence are modeled jointly and their dependencies are exploited. Our slot filling component is a globally normalized CRF style model, as opposed to left-to-right models in recent NN based slot taggers. Its features are automatically extracted through CNN layers and shared by the intent model. We show that our slot model component generates state-of-the-art results, outperforming CRF significantly. Our joint model outperforms the standard TriCRF by 1% absolute for both intent and slot. On a number of other domains, our joint model achieves 0.7-1%, and 0.9-2.1% absolute gains over the independent modeling approach for intent and slot respectively.","PeriodicalId":265258,"journal":{"name":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"316","resultStr":"{\"title\":\"Convolutional neural network based triangular CRF for joint intent detection and slot filling\",\"authors\":\"Puyang Xu, R. Sarikaya\",\"doi\":\"10.1109/ASRU.2013.6707709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We describe a joint model for intent detection and slot filling based on convolutional neural networks (CNN). The proposed architecture can be perceived as a neural network (NN) version of the triangular CRF model (TriCRF), in which the intent label and the slot sequence are modeled jointly and their dependencies are exploited. Our slot filling component is a globally normalized CRF style model, as opposed to left-to-right models in recent NN based slot taggers. Its features are automatically extracted through CNN layers and shared by the intent model. We show that our slot model component generates state-of-the-art results, outperforming CRF significantly. Our joint model outperforms the standard TriCRF by 1% absolute for both intent and slot. On a number of other domains, our joint model achieves 0.7-1%, and 0.9-2.1% absolute gains over the independent modeling approach for intent and slot respectively.\",\"PeriodicalId\":265258,\"journal\":{\"name\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"316\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2013.6707709\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2013.6707709","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Convolutional neural network based triangular CRF for joint intent detection and slot filling
We describe a joint model for intent detection and slot filling based on convolutional neural networks (CNN). The proposed architecture can be perceived as a neural network (NN) version of the triangular CRF model (TriCRF), in which the intent label and the slot sequence are modeled jointly and their dependencies are exploited. Our slot filling component is a globally normalized CRF style model, as opposed to left-to-right models in recent NN based slot taggers. Its features are automatically extracted through CNN layers and shared by the intent model. We show that our slot model component generates state-of-the-art results, outperforming CRF significantly. Our joint model outperforms the standard TriCRF by 1% absolute for both intent and slot. On a number of other domains, our joint model achieves 0.7-1%, and 0.9-2.1% absolute gains over the independent modeling approach for intent and slot respectively.