用全局小波正则化方法变换学习MRI

A. Tanc, E. Eksioglu
{"title":"用全局小波正则化方法变换学习MRI","authors":"A. Tanc, E. Eksioglu","doi":"10.1109/EUSIPCO.2015.7362705","DOIUrl":null,"url":null,"abstract":"Sparse regularization of the reconstructed image in a transform domain has led to state of the art algorithms for magnetic resonance imaging (MRI) reconstruction. Recently, new methods have been proposed which perform sparse regularization on patches extracted from the image. These patch level regularization methods utilize synthesis dictionaries or analysis transforms learned from the patch sets. In this work we jointly enforce a global wavelet domain sparsity constraint together with a patch level, learned analysis sparsity prior. Simulations indicate that this joint regularization culminates in MRI reconstruction performance exceeding the performance of methods which apply either of these terms alone.","PeriodicalId":401040,"journal":{"name":"2015 23rd European Signal Processing Conference (EUSIPCO)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Transform learning MRI with global wavelet regularization\",\"authors\":\"A. Tanc, E. Eksioglu\",\"doi\":\"10.1109/EUSIPCO.2015.7362705\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Sparse regularization of the reconstructed image in a transform domain has led to state of the art algorithms for magnetic resonance imaging (MRI) reconstruction. Recently, new methods have been proposed which perform sparse regularization on patches extracted from the image. These patch level regularization methods utilize synthesis dictionaries or analysis transforms learned from the patch sets. In this work we jointly enforce a global wavelet domain sparsity constraint together with a patch level, learned analysis sparsity prior. Simulations indicate that this joint regularization culminates in MRI reconstruction performance exceeding the performance of methods which apply either of these terms alone.\",\"PeriodicalId\":401040,\"journal\":{\"name\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 23rd European Signal Processing Conference (EUSIPCO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUSIPCO.2015.7362705\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 23rd European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUSIPCO.2015.7362705","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

重构图像在变换域中的稀疏正则化导致了磁共振成像(MRI)重构算法的发展。近年来,人们提出了对图像中提取的小块进行稀疏正则化的新方法。这些补丁级正则化方法利用从补丁集学习到的合成字典或分析变换。在这项工作中,我们联合实施了一个全局小波域稀疏性约束和一个补丁级、学习分析稀疏性先验。模拟表明,这种联合正则化最终导致MRI重建性能超过单独应用这些术语的方法的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Transform learning MRI with global wavelet regularization
Sparse regularization of the reconstructed image in a transform domain has led to state of the art algorithms for magnetic resonance imaging (MRI) reconstruction. Recently, new methods have been proposed which perform sparse regularization on patches extracted from the image. These patch level regularization methods utilize synthesis dictionaries or analysis transforms learned from the patch sets. In this work we jointly enforce a global wavelet domain sparsity constraint together with a patch level, learned analysis sparsity prior. Simulations indicate that this joint regularization culminates in MRI reconstruction performance exceeding the performance of methods which apply either of these terms alone.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信