具有数据和算子一般噪声模型的反问题变分正则化的误差估计

T. Hohage, Frank Werner
{"title":"具有数据和算子一般噪声模型的反问题变分正则化的误差估计","authors":"T. Hohage, Frank Werner","doi":"10.1553/etna_vol57s127","DOIUrl":null,"url":null,"abstract":". This paper is concerned with variational regularization of inverse problems where both the data and the forward operator are given only approximately. We propose a general approach to derive error estimates which separates the analysis of smoothness of the exact solution from the analysis of the effect of errors in the data and the operator. Our abstract error bounds are applied to both discrete and continuous data, random and deterministic types of error, as well as Huber data fidelity terms for impulsive noise.","PeriodicalId":282695,"journal":{"name":"ETNA - Electronic Transactions on Numerical Analysis","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Error estimates for variational regularization of inverse problems with general noise models for data and operator\",\"authors\":\"T. Hohage, Frank Werner\",\"doi\":\"10.1553/etna_vol57s127\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". This paper is concerned with variational regularization of inverse problems where both the data and the forward operator are given only approximately. We propose a general approach to derive error estimates which separates the analysis of smoothness of the exact solution from the analysis of the effect of errors in the data and the operator. Our abstract error bounds are applied to both discrete and continuous data, random and deterministic types of error, as well as Huber data fidelity terms for impulsive noise.\",\"PeriodicalId\":282695,\"journal\":{\"name\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ETNA - Electronic Transactions on Numerical Analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1553/etna_vol57s127\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ETNA - Electronic Transactions on Numerical Analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1553/etna_vol57s127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

. 本文研究数据和正算子都仅近似给出的反问题的变分正则化问题。我们提出了一种推导误差估计的一般方法,该方法将精确解的平滑性分析与数据和算子中误差影响的分析分开。我们的抽象误差边界适用于离散和连续数据,随机和确定性类型的误差,以及脉冲噪声的Huber数据保真度项。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Error estimates for variational regularization of inverse problems with general noise models for data and operator
. This paper is concerned with variational regularization of inverse problems where both the data and the forward operator are given only approximately. We propose a general approach to derive error estimates which separates the analysis of smoothness of the exact solution from the analysis of the effect of errors in the data and the operator. Our abstract error bounds are applied to both discrete and continuous data, random and deterministic types of error, as well as Huber data fidelity terms for impulsive noise.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信