传感器融合和深度神经网络用于果园内自主无人机导航

Kushtrim Breslla, G. Bortolotti, A. Boini, G. Perulli, B. Morandi, L. C. Grappadelli, L. Manfrini
{"title":"传感器融合和深度神经网络用于果园内自主无人机导航","authors":"Kushtrim Breslla, G. Bortolotti, A. Boini, G. Perulli, B. Morandi, L. C. Grappadelli, L. Manfrini","doi":"10.1109/MetroAgriFor50201.2020.9277568","DOIUrl":null,"url":null,"abstract":"With the increase of population in the world, the demand for quality food is increasing too. In recent years, increasing demand and environmental factors have heavily influenced the agricultural production. Automation and robotics for fruit and vegetable production/monitoring have become the new standard. This paper discusses an autonomous Unmanned Aerial Vehicle (UAV) able to navigate through rows orchard rows. The UAV is comprised of a flight controller (AP stack), a microcontroller for analog reading of different sensors, and an On-Board Computer (OBC). Pictures are taken through a camera and streamed through WiFi to a Ground Control Computer (GCC) running a convolution neural network model. Based on prior training, the model outputs three directions: RIGHT, LEFT and STRAIGHT. A moving average of multiple frames per second is extracted and sent to a build-in Proportional-IntegralDerivative (PID) controller on the UAV. After error correction from this feedback, controller sends the direction to the flight controller using MAVLink protocol’s radio channel overrides, thus performing autonomous navigation.","PeriodicalId":124961,"journal":{"name":"2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Sensor-fusion and deep neural networks for autonomous UAV navigation within orchards\",\"authors\":\"Kushtrim Breslla, G. Bortolotti, A. Boini, G. Perulli, B. Morandi, L. C. Grappadelli, L. Manfrini\",\"doi\":\"10.1109/MetroAgriFor50201.2020.9277568\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increase of population in the world, the demand for quality food is increasing too. In recent years, increasing demand and environmental factors have heavily influenced the agricultural production. Automation and robotics for fruit and vegetable production/monitoring have become the new standard. This paper discusses an autonomous Unmanned Aerial Vehicle (UAV) able to navigate through rows orchard rows. The UAV is comprised of a flight controller (AP stack), a microcontroller for analog reading of different sensors, and an On-Board Computer (OBC). Pictures are taken through a camera and streamed through WiFi to a Ground Control Computer (GCC) running a convolution neural network model. Based on prior training, the model outputs three directions: RIGHT, LEFT and STRAIGHT. A moving average of multiple frames per second is extracted and sent to a build-in Proportional-IntegralDerivative (PID) controller on the UAV. After error correction from this feedback, controller sends the direction to the flight controller using MAVLink protocol’s radio channel overrides, thus performing autonomous navigation.\",\"PeriodicalId\":124961,\"journal\":{\"name\":\"2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MetroAgriFor50201.2020.9277568\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Workshop on Metrology for Agriculture and Forestry (MetroAgriFor)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MetroAgriFor50201.2020.9277568","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

随着世界人口的增加,对优质食品的需求也在增加。近年来,不断增长的需求和环境因素严重影响了农业生产。果蔬生产/监控的自动化和机器人技术已经成为新的标准。本文讨论了一种能够在果园中穿行的自主无人机(UAV)。UAV由一个飞行控制器(AP堆栈)、一个用于模拟读取不同传感器的微控制器和一个机载计算机(OBC)组成。照片通过摄像头拍摄,并通过WiFi传输到运行卷积神经网络模型的地面控制计算机(GCC)。基于先验训练,模型输出三个方向:RIGHT, LEFT和STRAIGHT。提取每秒多帧的移动平均值并将其发送到无人机上的内置比例积分导数(PID)控制器。根据该反馈进行误差校正后,控制器使用MAVLink协议的无线电频道覆盖将方向发送给飞行控制器,从而执行自主导航。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensor-fusion and deep neural networks for autonomous UAV navigation within orchards
With the increase of population in the world, the demand for quality food is increasing too. In recent years, increasing demand and environmental factors have heavily influenced the agricultural production. Automation and robotics for fruit and vegetable production/monitoring have become the new standard. This paper discusses an autonomous Unmanned Aerial Vehicle (UAV) able to navigate through rows orchard rows. The UAV is comprised of a flight controller (AP stack), a microcontroller for analog reading of different sensors, and an On-Board Computer (OBC). Pictures are taken through a camera and streamed through WiFi to a Ground Control Computer (GCC) running a convolution neural network model. Based on prior training, the model outputs three directions: RIGHT, LEFT and STRAIGHT. A moving average of multiple frames per second is extracted and sent to a build-in Proportional-IntegralDerivative (PID) controller on the UAV. After error correction from this feedback, controller sends the direction to the flight controller using MAVLink protocol’s radio channel overrides, thus performing autonomous navigation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信