{"title":"分布式语音识别系统中基于奇异值分解的MFCC压缩方案","authors":"A. Touazi, M. Debyeche","doi":"10.1109/ASRU.2013.6707738","DOIUrl":null,"url":null,"abstract":"This paper proposes a new scheme for low bit-rate source coding of Mel Frequency Cepstral Coefficients (MFCCs) in Distributed Speech Recognition (DSR) system. The method uses the compressed ETSI Advanced Front-End (ETSI-AFE) features factorized into SVD components. By investigating the correlation property between successive MFCC frames, the odd ones are encoded using ETSI-AFE, while only the singular values and the nearest left singular vectors index are encoded and transmitted for the even frames. At the server side, the non-transmitted MFCCs are evaluated through their quantized singular values and the nearest left singular vectors. The system provides a compression bit-rate of 2.7 kbps. The recognition experiments were carried out on the Aurora-2 database for clean and multi-condition training modes. The simulation results show good recognition performance without significant degradation, with respect to the ETSI-AFE encoder.","PeriodicalId":265258,"journal":{"name":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An SVD-based scheme for MFCC compression in distributed speech recognition system\",\"authors\":\"A. Touazi, M. Debyeche\",\"doi\":\"10.1109/ASRU.2013.6707738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new scheme for low bit-rate source coding of Mel Frequency Cepstral Coefficients (MFCCs) in Distributed Speech Recognition (DSR) system. The method uses the compressed ETSI Advanced Front-End (ETSI-AFE) features factorized into SVD components. By investigating the correlation property between successive MFCC frames, the odd ones are encoded using ETSI-AFE, while only the singular values and the nearest left singular vectors index are encoded and transmitted for the even frames. At the server side, the non-transmitted MFCCs are evaluated through their quantized singular values and the nearest left singular vectors. The system provides a compression bit-rate of 2.7 kbps. The recognition experiments were carried out on the Aurora-2 database for clean and multi-condition training modes. The simulation results show good recognition performance without significant degradation, with respect to the ETSI-AFE encoder.\",\"PeriodicalId\":265258,\"journal\":{\"name\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2013.6707738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2013.6707738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An SVD-based scheme for MFCC compression in distributed speech recognition system
This paper proposes a new scheme for low bit-rate source coding of Mel Frequency Cepstral Coefficients (MFCCs) in Distributed Speech Recognition (DSR) system. The method uses the compressed ETSI Advanced Front-End (ETSI-AFE) features factorized into SVD components. By investigating the correlation property between successive MFCC frames, the odd ones are encoded using ETSI-AFE, while only the singular values and the nearest left singular vectors index are encoded and transmitted for the even frames. At the server side, the non-transmitted MFCCs are evaluated through their quantized singular values and the nearest left singular vectors. The system provides a compression bit-rate of 2.7 kbps. The recognition experiments were carried out on the Aurora-2 database for clean and multi-condition training modes. The simulation results show good recognition performance without significant degradation, with respect to the ETSI-AFE encoder.