分布式语音识别系统中基于奇异值分解的MFCC压缩方案

A. Touazi, M. Debyeche
{"title":"分布式语音识别系统中基于奇异值分解的MFCC压缩方案","authors":"A. Touazi, M. Debyeche","doi":"10.1109/ASRU.2013.6707738","DOIUrl":null,"url":null,"abstract":"This paper proposes a new scheme for low bit-rate source coding of Mel Frequency Cepstral Coefficients (MFCCs) in Distributed Speech Recognition (DSR) system. The method uses the compressed ETSI Advanced Front-End (ETSI-AFE) features factorized into SVD components. By investigating the correlation property between successive MFCC frames, the odd ones are encoded using ETSI-AFE, while only the singular values and the nearest left singular vectors index are encoded and transmitted for the even frames. At the server side, the non-transmitted MFCCs are evaluated through their quantized singular values and the nearest left singular vectors. The system provides a compression bit-rate of 2.7 kbps. The recognition experiments were carried out on the Aurora-2 database for clean and multi-condition training modes. The simulation results show good recognition performance without significant degradation, with respect to the ETSI-AFE encoder.","PeriodicalId":265258,"journal":{"name":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An SVD-based scheme for MFCC compression in distributed speech recognition system\",\"authors\":\"A. Touazi, M. Debyeche\",\"doi\":\"10.1109/ASRU.2013.6707738\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new scheme for low bit-rate source coding of Mel Frequency Cepstral Coefficients (MFCCs) in Distributed Speech Recognition (DSR) system. The method uses the compressed ETSI Advanced Front-End (ETSI-AFE) features factorized into SVD components. By investigating the correlation property between successive MFCC frames, the odd ones are encoded using ETSI-AFE, while only the singular values and the nearest left singular vectors index are encoded and transmitted for the even frames. At the server side, the non-transmitted MFCCs are evaluated through their quantized singular values and the nearest left singular vectors. The system provides a compression bit-rate of 2.7 kbps. The recognition experiments were carried out on the Aurora-2 database for clean and multi-condition training modes. The simulation results show good recognition performance without significant degradation, with respect to the ETSI-AFE encoder.\",\"PeriodicalId\":265258,\"journal\":{\"name\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE Workshop on Automatic Speech Recognition and Understanding\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASRU.2013.6707738\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE Workshop on Automatic Speech Recognition and Understanding","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASRU.2013.6707738","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种分布式语音识别(DSR)系统中低频倒谱系数(MFCCs)的低比特率源编码方案。该方法将压缩后的ETSI高级前端(ETSI- afe)特征分解为SVD分量。通过研究连续MFCC帧之间的相关性,采用ETSI-AFE对奇数帧进行编码,而对偶数帧只编码并传输奇异值和最接近的左奇异向量索引。在服务器端,通过量化奇异值和最接近的左奇异向量来评估非传输mfc。系统提供2.7 kbps的压缩比特率。在Aurora-2数据库上进行了清洁和多条件训练模式的识别实验。仿真结果表明,相对于ETSI-AFE编码器,该算法具有良好的识别性能,且没有明显的退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An SVD-based scheme for MFCC compression in distributed speech recognition system
This paper proposes a new scheme for low bit-rate source coding of Mel Frequency Cepstral Coefficients (MFCCs) in Distributed Speech Recognition (DSR) system. The method uses the compressed ETSI Advanced Front-End (ETSI-AFE) features factorized into SVD components. By investigating the correlation property between successive MFCC frames, the odd ones are encoded using ETSI-AFE, while only the singular values and the nearest left singular vectors index are encoded and transmitted for the even frames. At the server side, the non-transmitted MFCCs are evaluated through their quantized singular values and the nearest left singular vectors. The system provides a compression bit-rate of 2.7 kbps. The recognition experiments were carried out on the Aurora-2 database for clean and multi-condition training modes. The simulation results show good recognition performance without significant degradation, with respect to the ETSI-AFE encoder.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信