新颖的解决方案,使5nm节点及以上的接触电阻率<1E-9 Ω-cm2

R. Hung, F. Khaja, K. Hollar, K. Rao, S. Munnangi, Yongmei Chen, M. Okazaki, Yi-Chiau Huang, Xuebin Li, Hua Chung, O. Chan, C. Lazik, M. Jin, Hongwen Zhou, A. Mayur, Namsung Kim, E. Yieh
{"title":"新颖的解决方案,使5nm节点及以上的接触电阻率<1E-9 Ω-cm2","authors":"R. Hung, F. Khaja, K. Hollar, K. Rao, S. Munnangi, Yongmei Chen, M. Okazaki, Yi-Chiau Huang, Xuebin Li, Hua Chung, O. Chan, C. Lazik, M. Jin, Hongwen Zhou, A. Mayur, Namsung Kim, E. Yieh","doi":"10.1109/VLSI-TSA.2018.8403817","DOIUrl":null,"url":null,"abstract":"In this paper, we present a solution for N&P MOS contact resistivity (p<inf>c</inf>) improvement by adoption of highly doped epitaxial source/drain (S/D), contact ion implantation and advanced laser anneal. An ultra-low ρ<inf>c</inf> =3D 9.01x10<sup>-10</sup> Ωcm<sup>2</sup> on NMOS contact chain (CC) is achieved using highly doped (HD) Si:P selective epi in S/D combined with Ge PAI (pre-amorphization implant) and Applied Materials' nanosecond laser anneal (NLA). In addition, a record low ρ<inf>c</inf> =3D 1.16 x10<sup>-9</sup> Ωcm<sup>2</sup> for PMOS CC is demonstrated by Si<inf>0.55</inf>Ge<inf>045</inf>:B epi, Ga cryo ion implant and NLA. NLA enables super-activation of implanted dopants and dopants in the in-situ HD S/D epi films ([P]: 3.0x10<sup>21</sup>cm<sup>-3</sup> for NSD epi; [B]: 1.0x10<sup>21</sup>cm<sup>-3</sup> for PSD epi). These new process technologies provide a pathway to achieve the target p<inf>c</inf> required for transistor performance in advanced logic devices.","PeriodicalId":209993,"journal":{"name":"2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Novel solutions to enable contact resistivity <1E-9 Ω-cm2 for 5nm node and beyond\",\"authors\":\"R. Hung, F. Khaja, K. Hollar, K. Rao, S. Munnangi, Yongmei Chen, M. Okazaki, Yi-Chiau Huang, Xuebin Li, Hua Chung, O. Chan, C. Lazik, M. Jin, Hongwen Zhou, A. Mayur, Namsung Kim, E. Yieh\",\"doi\":\"10.1109/VLSI-TSA.2018.8403817\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a solution for N&P MOS contact resistivity (p<inf>c</inf>) improvement by adoption of highly doped epitaxial source/drain (S/D), contact ion implantation and advanced laser anneal. An ultra-low ρ<inf>c</inf> =3D 9.01x10<sup>-10</sup> Ωcm<sup>2</sup> on NMOS contact chain (CC) is achieved using highly doped (HD) Si:P selective epi in S/D combined with Ge PAI (pre-amorphization implant) and Applied Materials' nanosecond laser anneal (NLA). In addition, a record low ρ<inf>c</inf> =3D 1.16 x10<sup>-9</sup> Ωcm<sup>2</sup> for PMOS CC is demonstrated by Si<inf>0.55</inf>Ge<inf>045</inf>:B epi, Ga cryo ion implant and NLA. NLA enables super-activation of implanted dopants and dopants in the in-situ HD S/D epi films ([P]: 3.0x10<sup>21</sup>cm<sup>-3</sup> for NSD epi; [B]: 1.0x10<sup>21</sup>cm<sup>-3</sup> for PSD epi). These new process technologies provide a pathway to achieve the target p<inf>c</inf> required for transistor performance in advanced logic devices.\",\"PeriodicalId\":209993,\"journal\":{\"name\":\"2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSI-TSA.2018.8403817\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSI-TSA.2018.8403817","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

本文提出了采用高掺杂外延源/漏极(S/D)、接触离子注入和先进激光退火技术来提高N&P MOS接触电阻率(pc)的解决方案。采用高掺杂(HD) Si:P选择性外接体与Ge PAI(预非晶化植入物)和应用材料公司的纳秒激光退火(NLA)相结合,在S/D中实现了NMOS接触链(CC)上的超低ρc =3D 9.01x10-10 Ωcm2。此外,通过Si0.55Ge045:B epi、Ga冷离子注入和NLA,证明了PMOS CC的ρc =3D 1.16 x10-9 Ωcm2的新低。NLA可以使植入的掺杂剂和原位HD S/D外延膜中的掺杂剂超活化(NSD外延膜:3 × 1021cm-3;[B]: 1 × 1021cm-3 (PSD)。这些新的工艺技术为实现先进逻辑器件中晶体管性能所需的目标pc提供了一条途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Novel solutions to enable contact resistivity <1E-9 Ω-cm2 for 5nm node and beyond
In this paper, we present a solution for N&P MOS contact resistivity (pc) improvement by adoption of highly doped epitaxial source/drain (S/D), contact ion implantation and advanced laser anneal. An ultra-low ρc =3D 9.01x10-10 Ωcm2 on NMOS contact chain (CC) is achieved using highly doped (HD) Si:P selective epi in S/D combined with Ge PAI (pre-amorphization implant) and Applied Materials' nanosecond laser anneal (NLA). In addition, a record low ρc =3D 1.16 x10-9 Ωcm2 for PMOS CC is demonstrated by Si0.55Ge045:B epi, Ga cryo ion implant and NLA. NLA enables super-activation of implanted dopants and dopants in the in-situ HD S/D epi films ([P]: 3.0x1021cm-3 for NSD epi; [B]: 1.0x1021cm-3 for PSD epi). These new process technologies provide a pathway to achieve the target pc required for transistor performance in advanced logic devices.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信