基于遗传算法和神经网络的肝脏肿瘤提取方法

Eisaku Ohta, Y. Mitsukura, M. Fukumi, N. Akamatsu, M. Yasutomo
{"title":"基于遗传算法和神经网络的肝脏肿瘤提取方法","authors":"Eisaku Ohta, Y. Mitsukura, M. Fukumi, N. Akamatsu, M. Yasutomo","doi":"10.1109/ANZIIS.2001.974050","DOIUrl":null,"url":null,"abstract":"Recently, internal human organ disorders that medical image analysis can be used to detect is being actively researched. The research have however, concentrated on the extraction of pulmonary tumors. There is therefore, little research being done on the extraction of liver tumors. This is because there is no difference between concentrated values of a healthy part and one with a tumor in liver CT images. In this paper, the extraction method of such liver tumors is proposed. Furthermore, in order to demonstrate the effectiveness of the proposed scheme, we show a simulation example, using real CT image data.","PeriodicalId":383878,"journal":{"name":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An extraction method of liver tumors by using genetic algorithms and neural networks\",\"authors\":\"Eisaku Ohta, Y. Mitsukura, M. Fukumi, N. Akamatsu, M. Yasutomo\",\"doi\":\"10.1109/ANZIIS.2001.974050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, internal human organ disorders that medical image analysis can be used to detect is being actively researched. The research have however, concentrated on the extraction of pulmonary tumors. There is therefore, little research being done on the extraction of liver tumors. This is because there is no difference between concentrated values of a healthy part and one with a tumor in liver CT images. In this paper, the extraction method of such liver tumors is proposed. Furthermore, in order to demonstrate the effectiveness of the proposed scheme, we show a simulation example, using real CT image data.\",\"PeriodicalId\":383878,\"journal\":{\"name\":\"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANZIIS.2001.974050\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Seventh Australian and New Zealand Intelligent Information Systems Conference, 2001","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZIIS.2001.974050","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

近年来,利用医学图像分析检测人体内部器官疾病的研究正在积极进行。然而,研究主要集中在肺肿瘤的提取上。因此,很少有关于肝肿瘤提取的研究。这是因为肝脏CT图像中健康部位和肿瘤部位的集中值没有区别。本文提出了该类肝脏肿瘤的提取方法。此外,为了证明该方法的有效性,我们给出了一个使用真实CT图像数据的仿真示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An extraction method of liver tumors by using genetic algorithms and neural networks
Recently, internal human organ disorders that medical image analysis can be used to detect is being actively researched. The research have however, concentrated on the extraction of pulmonary tumors. There is therefore, little research being done on the extraction of liver tumors. This is because there is no difference between concentrated values of a healthy part and one with a tumor in liver CT images. In this paper, the extraction method of such liver tumors is proposed. Furthermore, in order to demonstrate the effectiveness of the proposed scheme, we show a simulation example, using real CT image data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信