利用独立集寻找基因共表达网络中的簇数

Harun Pirim
{"title":"利用独立集寻找基因共表达网络中的簇数","authors":"Harun Pirim","doi":"10.1109/SocialCom.2013.125","DOIUrl":null,"url":null,"abstract":"Determining the number of clusters is required for most of the clustering algorithms. The number of clusters in a gene co-expression network is not known a prior. In this study, maximum independent set concept from graph theory is applied for a gene expression data set. The results indicate that employing independent set approach to approximate the number of clusters is promising.","PeriodicalId":129308,"journal":{"name":"2013 International Conference on Social Computing","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finding Number of Clusters in a Gene Co-expression Network Using Independent Sets\",\"authors\":\"Harun Pirim\",\"doi\":\"10.1109/SocialCom.2013.125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Determining the number of clusters is required for most of the clustering algorithms. The number of clusters in a gene co-expression network is not known a prior. In this study, maximum independent set concept from graph theory is applied for a gene expression data set. The results indicate that employing independent set approach to approximate the number of clusters is promising.\",\"PeriodicalId\":129308,\"journal\":{\"name\":\"2013 International Conference on Social Computing\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-09-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Social Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SocialCom.2013.125\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Social Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SocialCom.2013.125","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

大多数聚类算法都需要确定聚类的数量。基因共表达网络中的簇数是未知的。本文将图论中的最大独立集概念应用于基因表达数据集。结果表明,采用独立集方法来近似聚类数量是有希望的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finding Number of Clusters in a Gene Co-expression Network Using Independent Sets
Determining the number of clusters is required for most of the clustering algorithms. The number of clusters in a gene co-expression network is not known a prior. In this study, maximum independent set concept from graph theory is applied for a gene expression data set. The results indicate that employing independent set approach to approximate the number of clusters is promising.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信