无散度向量场的bmo -范数与相关副变子范数的等价性

M. N. Demchenko
{"title":"无散度向量场的bmo -范数与相关副变子范数的等价性","authors":"M. N. Demchenko","doi":"10.1109/DD55230.2022.9961026","DOIUrl":null,"url":null,"abstract":"We establish an estimate of the BMO-norm of a divergence-free vector field in $\\boldsymbol{\\mathbb{R}^{3}}$ in terms of the operator norm of an associated paracommutator. The latter is essentially a $\\boldsymbol{\\Psi\\text{DO}}$ (bounded in $\\boldsymbol{L_{2}(\\mathbb{R}^{3};\\mathbb{C}^{3})}$ ), whose symbol depends linearly on the vector field. Together with the result of P. Auscher and M. Taylor concerning the converse estimate, this provides an equivalent norm in the space of divergence-free fields from BMO.","PeriodicalId":125852,"journal":{"name":"2022 Days on Diffraction (DD)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the equivalence of the BMO-norm of divergence-free vector fields and norm of related paracommutators\",\"authors\":\"M. N. Demchenko\",\"doi\":\"10.1109/DD55230.2022.9961026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish an estimate of the BMO-norm of a divergence-free vector field in $\\\\boldsymbol{\\\\mathbb{R}^{3}}$ in terms of the operator norm of an associated paracommutator. The latter is essentially a $\\\\boldsymbol{\\\\Psi\\\\text{DO}}$ (bounded in $\\\\boldsymbol{L_{2}(\\\\mathbb{R}^{3};\\\\mathbb{C}^{3})}$ ), whose symbol depends linearly on the vector field. Together with the result of P. Auscher and M. Taylor concerning the converse estimate, this provides an equivalent norm in the space of divergence-free fields from BMO.\",\"PeriodicalId\":125852,\"journal\":{\"name\":\"2022 Days on Diffraction (DD)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Days on Diffraction (DD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD55230.2022.9961026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Days on Diffraction (DD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD55230.2022.9961026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们建立了$\boldsymbol{\mathbb{R}^{3}}$中无散度向量场的bmo -范数的估计,该估计是由相关的副变子的算子范数表示的。后者本质上是$\boldsymbol{\Psi\text{DO}}$(以$\boldsymbol{L_{2}(\mathbb{R}^{3};\mathbb{C}^{3})}$为界),其符号线性依赖于向量场。与P. Auscher和M. Taylor关于逆估计的结果一起,从BMO中提供了无散度场空间中的等效范数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the equivalence of the BMO-norm of divergence-free vector fields and norm of related paracommutators
We establish an estimate of the BMO-norm of a divergence-free vector field in $\boldsymbol{\mathbb{R}^{3}}$ in terms of the operator norm of an associated paracommutator. The latter is essentially a $\boldsymbol{\Psi\text{DO}}$ (bounded in $\boldsymbol{L_{2}(\mathbb{R}^{3};\mathbb{C}^{3})}$ ), whose symbol depends linearly on the vector field. Together with the result of P. Auscher and M. Taylor concerning the converse estimate, this provides an equivalent norm in the space of divergence-free fields from BMO.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信