{"title":"无散度向量场的bmo -范数与相关副变子范数的等价性","authors":"M. N. Demchenko","doi":"10.1109/DD55230.2022.9961026","DOIUrl":null,"url":null,"abstract":"We establish an estimate of the BMO-norm of a divergence-free vector field in $\\boldsymbol{\\mathbb{R}^{3}}$ in terms of the operator norm of an associated paracommutator. The latter is essentially a $\\boldsymbol{\\Psi\\text{DO}}$ (bounded in $\\boldsymbol{L_{2}(\\mathbb{R}^{3};\\mathbb{C}^{3})}$ ), whose symbol depends linearly on the vector field. Together with the result of P. Auscher and M. Taylor concerning the converse estimate, this provides an equivalent norm in the space of divergence-free fields from BMO.","PeriodicalId":125852,"journal":{"name":"2022 Days on Diffraction (DD)","volume":"80 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the equivalence of the BMO-norm of divergence-free vector fields and norm of related paracommutators\",\"authors\":\"M. N. Demchenko\",\"doi\":\"10.1109/DD55230.2022.9961026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish an estimate of the BMO-norm of a divergence-free vector field in $\\\\boldsymbol{\\\\mathbb{R}^{3}}$ in terms of the operator norm of an associated paracommutator. The latter is essentially a $\\\\boldsymbol{\\\\Psi\\\\text{DO}}$ (bounded in $\\\\boldsymbol{L_{2}(\\\\mathbb{R}^{3};\\\\mathbb{C}^{3})}$ ), whose symbol depends linearly on the vector field. Together with the result of P. Auscher and M. Taylor concerning the converse estimate, this provides an equivalent norm in the space of divergence-free fields from BMO.\",\"PeriodicalId\":125852,\"journal\":{\"name\":\"2022 Days on Diffraction (DD)\",\"volume\":\"80 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Days on Diffraction (DD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DD55230.2022.9961026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Days on Diffraction (DD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DD55230.2022.9961026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On the equivalence of the BMO-norm of divergence-free vector fields and norm of related paracommutators
We establish an estimate of the BMO-norm of a divergence-free vector field in $\boldsymbol{\mathbb{R}^{3}}$ in terms of the operator norm of an associated paracommutator. The latter is essentially a $\boldsymbol{\Psi\text{DO}}$ (bounded in $\boldsymbol{L_{2}(\mathbb{R}^{3};\mathbb{C}^{3})}$ ), whose symbol depends linearly on the vector field. Together with the result of P. Auscher and M. Taylor concerning the converse estimate, this provides an equivalent norm in the space of divergence-free fields from BMO.