应用回归模型预测肾移植患者肾小球滤过率

I. Loperto, A. Scala, Lucia Rossano, R. Carrano, S. Federico, M. Triassi, G. Improta
{"title":"应用回归模型预测肾移植患者肾小球滤过率","authors":"I. Loperto, A. Scala, Lucia Rossano, R. Carrano, S. Federico, M. Triassi, G. Improta","doi":"10.1145/3502060.3503627","DOIUrl":null,"url":null,"abstract":"Despite of the numerous progress of modern medicine, organ transplantation is never a free risk procedure. Kidney transplant, in particular, can bring to numerous short and/or long-term problems, like infection or diabetes. Since such problems can appear up to years, a constant monitoring of Kidney transplanted patients is necessary to try and avoid a bad prognosis. Glomerular Filtration rate (GFR) is an important marker to evaluate kidney transplanted patients. Since it is necessary to measure values of GFR over time, new predictive approaches can reveal useful to such scope. In this work we present a Multiple Linear Regression model and a Machine Learning method to correlate GFR with glycaemia (mg/dL) and the dosage of a calcineurin inhibitor. Results show how such model can be useful in a long term evaluation of kidney transplanted patients.","PeriodicalId":193100,"journal":{"name":"2021 International Symposium on Biomedical Engineering and Computational Biology","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Use of regression models to predict glomerular filtration rate in kidney transplanted patients\",\"authors\":\"I. Loperto, A. Scala, Lucia Rossano, R. Carrano, S. Federico, M. Triassi, G. Improta\",\"doi\":\"10.1145/3502060.3503627\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite of the numerous progress of modern medicine, organ transplantation is never a free risk procedure. Kidney transplant, in particular, can bring to numerous short and/or long-term problems, like infection or diabetes. Since such problems can appear up to years, a constant monitoring of Kidney transplanted patients is necessary to try and avoid a bad prognosis. Glomerular Filtration rate (GFR) is an important marker to evaluate kidney transplanted patients. Since it is necessary to measure values of GFR over time, new predictive approaches can reveal useful to such scope. In this work we present a Multiple Linear Regression model and a Machine Learning method to correlate GFR with glycaemia (mg/dL) and the dosage of a calcineurin inhibitor. Results show how such model can be useful in a long term evaluation of kidney transplanted patients.\",\"PeriodicalId\":193100,\"journal\":{\"name\":\"2021 International Symposium on Biomedical Engineering and Computational Biology\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Symposium on Biomedical Engineering and Computational Biology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3502060.3503627\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Symposium on Biomedical Engineering and Computational Biology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3502060.3503627","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

尽管现代医学取得了许多进步,但器官移植从来都不是一个没有风险的手术。尤其是肾脏移植,会带来许多短期和/或长期的问题,比如感染或糖尿病。由于这些问题可能出现长达数年,因此对肾移植患者进行持续监测是必要的,以尽量避免不良预后。肾小球滤过率(Glomerular Filtration rate, GFR)是评价肾移植患者的重要指标。由于有必要测量GFR随时间的值,新的预测方法可以在这种范围内显示有用。在这项工作中,我们提出了一个多元线性回归模型和机器学习方法,将GFR与血糖(mg/dL)和钙调磷酸酶抑制剂的剂量联系起来。结果表明该模型可用于肾移植患者的长期评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Use of regression models to predict glomerular filtration rate in kidney transplanted patients
Despite of the numerous progress of modern medicine, organ transplantation is never a free risk procedure. Kidney transplant, in particular, can bring to numerous short and/or long-term problems, like infection or diabetes. Since such problems can appear up to years, a constant monitoring of Kidney transplanted patients is necessary to try and avoid a bad prognosis. Glomerular Filtration rate (GFR) is an important marker to evaluate kidney transplanted patients. Since it is necessary to measure values of GFR over time, new predictive approaches can reveal useful to such scope. In this work we present a Multiple Linear Regression model and a Machine Learning method to correlate GFR with glycaemia (mg/dL) and the dosage of a calcineurin inhibitor. Results show how such model can be useful in a long term evaluation of kidney transplanted patients.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信