基于分片语义和节点顺序的二进制代码漏洞检测

Ningning Cui, Liwei Chen, Gang Shi
{"title":"基于分片语义和节点顺序的二进制代码漏洞检测","authors":"Ningning Cui, Liwei Chen, Gang Shi","doi":"10.1109/ISCC58397.2023.10218114","DOIUrl":null,"url":null,"abstract":"The proliferation of code reuse and the prevalence of CPU architecture and compilation environment diversity inevitably lead to many similar cross-platform binary vulnerability codes. This paper designs a deep learning model based on slice semantic and node order to detect similarity vulnerabilities. Firstly, it traverses the program dependence graph (PDG) forward and backward from the library/API function node to generate the binary slice and then uses the bidirectional long short-term memory (BLSTM) network and attention mechanism to form the semantic feature vector of the binary slice. Secondly, it extracts the order information of the slice nodes in the PDG and forms the adjacency matrix, which is then fed into the convolutional neural network (CNN) to form the order feature vector. Finally, the semantic and order feature vector are fused and inputted into the siamese network for similarity vulnerability detection. The detection results show that our method can effectively detect vulnerability.","PeriodicalId":265337,"journal":{"name":"2023 IEEE Symposium on Computers and Communications (ISCC)","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BVSNO: Binary Code Vulnerability Detection Based on Slice Semantic and Node Order\",\"authors\":\"Ningning Cui, Liwei Chen, Gang Shi\",\"doi\":\"10.1109/ISCC58397.2023.10218114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The proliferation of code reuse and the prevalence of CPU architecture and compilation environment diversity inevitably lead to many similar cross-platform binary vulnerability codes. This paper designs a deep learning model based on slice semantic and node order to detect similarity vulnerabilities. Firstly, it traverses the program dependence graph (PDG) forward and backward from the library/API function node to generate the binary slice and then uses the bidirectional long short-term memory (BLSTM) network and attention mechanism to form the semantic feature vector of the binary slice. Secondly, it extracts the order information of the slice nodes in the PDG and forms the adjacency matrix, which is then fed into the convolutional neural network (CNN) to form the order feature vector. Finally, the semantic and order feature vector are fused and inputted into the siamese network for similarity vulnerability detection. The detection results show that our method can effectively detect vulnerability.\",\"PeriodicalId\":265337,\"journal\":{\"name\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"volume\":\"47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 IEEE Symposium on Computers and Communications (ISCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCC58397.2023.10218114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE Symposium on Computers and Communications (ISCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCC58397.2023.10218114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

代码重用的激增、CPU体系结构和编译环境多样性的普遍存在,不可避免地导致了许多相似的跨平台二进制漏洞代码。本文设计了一种基于切片语义和节点顺序的深度学习模型来检测相似漏洞。首先从库/API函数节点前后遍历程序依赖图(PDG)生成二进制片,然后利用双向长短期记忆(BLSTM)网络和注意机制形成二进制片的语义特征向量。其次,提取PDG中切片节点的阶数信息,形成邻接矩阵,并将邻接矩阵输入卷积神经网络(CNN),形成阶数特征向量;最后,将语义特征向量和顺序特征向量融合并输入到连体网络中进行相似性漏洞检测。检测结果表明,该方法可以有效地检测漏洞。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BVSNO: Binary Code Vulnerability Detection Based on Slice Semantic and Node Order
The proliferation of code reuse and the prevalence of CPU architecture and compilation environment diversity inevitably lead to many similar cross-platform binary vulnerability codes. This paper designs a deep learning model based on slice semantic and node order to detect similarity vulnerabilities. Firstly, it traverses the program dependence graph (PDG) forward and backward from the library/API function node to generate the binary slice and then uses the bidirectional long short-term memory (BLSTM) network and attention mechanism to form the semantic feature vector of the binary slice. Secondly, it extracts the order information of the slice nodes in the PDG and forms the adjacency matrix, which is then fed into the convolutional neural network (CNN) to form the order feature vector. Finally, the semantic and order feature vector are fused and inputted into the siamese network for similarity vulnerability detection. The detection results show that our method can effectively detect vulnerability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信