内横流y形孔的先进气膜冷却性能

Jian-xia Luo, Cun-liang Liu, Hui-ren Zhu
{"title":"内横流y形孔的先进气膜冷却性能","authors":"Jian-xia Luo, Cun-liang Liu, Hui-ren Zhu","doi":"10.1115/GT2018-75992","DOIUrl":null,"url":null,"abstract":"Film cooling performances of three film holes have been numerical researched in this paper, including a lateral inclined cylindrical hole, a fan-shaped hole and a y-shaped hole. The simulation is computed by the commercial software Fluent based on Reynolds Averaged Navier-Stokes (RANS) equations and realizable k-ε turbulence model with enhanced wall treatment.\n The y-shaped hole is a novel film hole developed from the lateral inclined cylindrical hole. With inner crossflow, the jet of the lateral inclined cylindrical hole performs to be two streams as a result of the helical motion in the hole. Accordingly, the hole exit was optimized with two expansions: one is expanded along the lateral inclined direction and the other is expanded along the mainstream flow direction. The lateral inclined cylindrical hole with two expansions at the exit is named the y-shaped hole. Compared to the fundamental lateral inclined cylindrical hole, the y-shaped hole has different counter-rotating vortices and much better film coverage.\n Experiments have been conducted to test the film cooling performance of the y-shaped hole. Compared to the lateral inclined cylindrical hole, much higher film cooling effectiveness has been measured in the y-shaped hole as a result of the enhanced lateral film coverage and the weakened film dissipation in the streamwise direction. The film performance of the y-shaped hole rises with the increase of the blowing ratio. At M = 2.0, the film of the y-shaped hole keeps close to the wall while the film of the lateral inclined cylindrical hole is completely lifted up, resulting in the increase of the area average film cooling effectiveness up to 128.7%.","PeriodicalId":239866,"journal":{"name":"Volume 5C: Heat Transfer","volume":"82 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Advanced Film Cooling Performance of a Y-Shaped Hole With Inner Crossflow\",\"authors\":\"Jian-xia Luo, Cun-liang Liu, Hui-ren Zhu\",\"doi\":\"10.1115/GT2018-75992\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Film cooling performances of three film holes have been numerical researched in this paper, including a lateral inclined cylindrical hole, a fan-shaped hole and a y-shaped hole. The simulation is computed by the commercial software Fluent based on Reynolds Averaged Navier-Stokes (RANS) equations and realizable k-ε turbulence model with enhanced wall treatment.\\n The y-shaped hole is a novel film hole developed from the lateral inclined cylindrical hole. With inner crossflow, the jet of the lateral inclined cylindrical hole performs to be two streams as a result of the helical motion in the hole. Accordingly, the hole exit was optimized with two expansions: one is expanded along the lateral inclined direction and the other is expanded along the mainstream flow direction. The lateral inclined cylindrical hole with two expansions at the exit is named the y-shaped hole. Compared to the fundamental lateral inclined cylindrical hole, the y-shaped hole has different counter-rotating vortices and much better film coverage.\\n Experiments have been conducted to test the film cooling performance of the y-shaped hole. Compared to the lateral inclined cylindrical hole, much higher film cooling effectiveness has been measured in the y-shaped hole as a result of the enhanced lateral film coverage and the weakened film dissipation in the streamwise direction. The film performance of the y-shaped hole rises with the increase of the blowing ratio. At M = 2.0, the film of the y-shaped hole keeps close to the wall while the film of the lateral inclined cylindrical hole is completely lifted up, resulting in the increase of the area average film cooling effectiveness up to 128.7%.\",\"PeriodicalId\":239866,\"journal\":{\"name\":\"Volume 5C: Heat Transfer\",\"volume\":\"82 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5C: Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/GT2018-75992\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5C: Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/GT2018-75992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文对横向倾斜圆柱孔、扇形孔和y形孔三种膜孔的气膜冷却性能进行了数值研究。利用商业软件Fluent基于Reynolds平均Navier-Stokes (RANS)方程和可实现的k-ε湍流模型进行了模拟计算。y形孔是由横向倾斜圆柱孔发展而来的新型膜孔。在横向倾斜圆柱孔内,由于孔内的螺旋运动,射流表现为两股流。据此,对孔出口进行了两种扩展,一种是沿横向倾斜方向扩展,另一种是沿主流流动方向扩展。在出口有两个扩展的横向倾斜圆柱形孔称为y形孔。与基本的横向倾斜圆柱孔相比,y形孔具有不同的反旋涡和更好的膜覆盖率。对y形孔的气膜冷却性能进行了实验研究。与横向倾斜圆柱孔相比,y形孔的侧向膜覆盖面积增大,而沿流方向的膜耗散减弱,因此测量到的膜冷却效果要高得多。y形孔的成膜性能随吹气比的增大而增大。在M = 2.0时,y形孔的气膜紧贴壁面,而侧斜圆柱孔的气膜完全抬起,面积平均气膜冷却效率提高了128.7%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advanced Film Cooling Performance of a Y-Shaped Hole With Inner Crossflow
Film cooling performances of three film holes have been numerical researched in this paper, including a lateral inclined cylindrical hole, a fan-shaped hole and a y-shaped hole. The simulation is computed by the commercial software Fluent based on Reynolds Averaged Navier-Stokes (RANS) equations and realizable k-ε turbulence model with enhanced wall treatment. The y-shaped hole is a novel film hole developed from the lateral inclined cylindrical hole. With inner crossflow, the jet of the lateral inclined cylindrical hole performs to be two streams as a result of the helical motion in the hole. Accordingly, the hole exit was optimized with two expansions: one is expanded along the lateral inclined direction and the other is expanded along the mainstream flow direction. The lateral inclined cylindrical hole with two expansions at the exit is named the y-shaped hole. Compared to the fundamental lateral inclined cylindrical hole, the y-shaped hole has different counter-rotating vortices and much better film coverage. Experiments have been conducted to test the film cooling performance of the y-shaped hole. Compared to the lateral inclined cylindrical hole, much higher film cooling effectiveness has been measured in the y-shaped hole as a result of the enhanced lateral film coverage and the weakened film dissipation in the streamwise direction. The film performance of the y-shaped hole rises with the increase of the blowing ratio. At M = 2.0, the film of the y-shaped hole keeps close to the wall while the film of the lateral inclined cylindrical hole is completely lifted up, resulting in the increase of the area average film cooling effectiveness up to 128.7%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信