空中双足:利用四旋翼的双足机器人的一种新的物理表达

Azumi Maekawa, Ryuma Niiyama, S. Yamanaka
{"title":"空中双足:利用四旋翼的双足机器人的一种新的物理表达","authors":"Azumi Maekawa, Ryuma Niiyama, S. Yamanaka","doi":"10.1145/3214907.3214928","DOIUrl":null,"url":null,"abstract":"We present a biped robot which can move agiler than conventional robots. Our robot can generate bipedal walking motion automatically using the proposed method. By using a quadrotor for balance and movement it is possible to make an agiler movement, and generate a gait interactively and in real time according to the motion of the quadrotor using the optimized control policy of the legs. Our system takes the velocity of the quadrotor as an input and legs motions are produced so that the velocity of the foot in contact with the ground to zero, and bipedal walking motion is generated. The control policy is optimized using reinforcement learning with a physics engine.","PeriodicalId":370990,"journal":{"name":"ACM SIGGRAPH 2018 Emerging Technologies","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Aerial-biped: a new physical expression by the biped robot using a quadrotor\",\"authors\":\"Azumi Maekawa, Ryuma Niiyama, S. Yamanaka\",\"doi\":\"10.1145/3214907.3214928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a biped robot which can move agiler than conventional robots. Our robot can generate bipedal walking motion automatically using the proposed method. By using a quadrotor for balance and movement it is possible to make an agiler movement, and generate a gait interactively and in real time according to the motion of the quadrotor using the optimized control policy of the legs. Our system takes the velocity of the quadrotor as an input and legs motions are produced so that the velocity of the foot in contact with the ground to zero, and bipedal walking motion is generated. The control policy is optimized using reinforcement learning with a physics engine.\",\"PeriodicalId\":370990,\"journal\":{\"name\":\"ACM SIGGRAPH 2018 Emerging Technologies\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2018 Emerging Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3214907.3214928\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2018 Emerging Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3214907.3214928","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种比传统机器人移动更敏捷的双足机器人。采用该方法,机器人可以自动生成双足行走运动。利用四旋翼进行平衡和运动,可以根据四旋翼的运动,利用优化的腿控制策略,实现更敏捷的运动,并实时交互地生成步态。我们的系统以四旋翼飞行器的速度为输入,产生腿部运动,使足部与地面的接触速度为零,产生两足行走运动。控制策略使用物理引擎的强化学习进行优化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Aerial-biped: a new physical expression by the biped robot using a quadrotor
We present a biped robot which can move agiler than conventional robots. Our robot can generate bipedal walking motion automatically using the proposed method. By using a quadrotor for balance and movement it is possible to make an agiler movement, and generate a gait interactively and in real time according to the motion of the quadrotor using the optimized control policy of the legs. Our system takes the velocity of the quadrotor as an input and legs motions are produced so that the velocity of the foot in contact with the ground to zero, and bipedal walking motion is generated. The control policy is optimized using reinforcement learning with a physics engine.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信