基于无监督多目标跟踪方法的浮选泡沫监测

A. Abrarov
{"title":"基于无监督多目标跟踪方法的浮选泡沫监测","authors":"A. Abrarov","doi":"10.54026/jmms/1054","DOIUrl":null,"url":null,"abstract":"The popularity of computer vision algorithms applied to the metals and mining industry has grown drastically in recent years. This article will cover the application of computer vision models, video processing techniques, and methods of tracking many objects without data labeling (so-called unsupervised multiple object tracking) using the flotation froth, by example. In more detail, you will find in this article description of this kind of data domain as well as some words about the flotation process, the segmentation approach for many similar objects and an approach to its simultaneous tracking, an overview of existing tracking methods without data labeling and quality metrics comparison of these methods.","PeriodicalId":199420,"journal":{"name":"Journal of Mineral and Material Science (JMMS)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flotation Froth Monitoring Using Unsupervised Multiple Object Tracking Methods\",\"authors\":\"A. Abrarov\",\"doi\":\"10.54026/jmms/1054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The popularity of computer vision algorithms applied to the metals and mining industry has grown drastically in recent years. This article will cover the application of computer vision models, video processing techniques, and methods of tracking many objects without data labeling (so-called unsupervised multiple object tracking) using the flotation froth, by example. In more detail, you will find in this article description of this kind of data domain as well as some words about the flotation process, the segmentation approach for many similar objects and an approach to its simultaneous tracking, an overview of existing tracking methods without data labeling and quality metrics comparison of these methods.\",\"PeriodicalId\":199420,\"journal\":{\"name\":\"Journal of Mineral and Material Science (JMMS)\",\"volume\":\"61 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mineral and Material Science (JMMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54026/jmms/1054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mineral and Material Science (JMMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54026/jmms/1054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近年来,计算机视觉算法在金属和采矿业中的应用得到了迅猛发展。本文将通过实例介绍计算机视觉模型、视频处理技术的应用,以及利用浮选泡沫在没有数据标记的情况下跟踪多目标(所谓的无监督多目标跟踪)的方法。更详细地说,您将在本文中找到对这类数据域的描述,以及关于浮选过程的一些文字,许多类似对象的分割方法及其同时跟踪方法,对现有无数据标记跟踪方法的概述以及这些方法的质量指标比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Flotation Froth Monitoring Using Unsupervised Multiple Object Tracking Methods
The popularity of computer vision algorithms applied to the metals and mining industry has grown drastically in recent years. This article will cover the application of computer vision models, video processing techniques, and methods of tracking many objects without data labeling (so-called unsupervised multiple object tracking) using the flotation froth, by example. In more detail, you will find in this article description of this kind of data domain as well as some words about the flotation process, the segmentation approach for many similar objects and an approach to its simultaneous tracking, an overview of existing tracking methods without data labeling and quality metrics comparison of these methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信