正面人脸图像的语义获取:表达不变问题

Aleix M. Mart nez
{"title":"正面人脸图像的语义获取:表达不变问题","authors":"Aleix M. Mart nez","doi":"10.1109/IVL.2000.853840","DOIUrl":null,"url":null,"abstract":"Semantic queries to a database of images are more desirable than low-level feature queries, because they facilitate the user's task. One such approach is object-related image retrieval. In the context of face images, it is of interest to retrieve images based on people's names and facial expressions. However, when images of the database are allowed to appear at different facial expressions, the face recognition approach encounters the expression-invariant problem, i.e. how to robustly identify a person's face for which its learning and testing face images differ in facial expression. This paper presents a new local, probabilistic approach that accounts for this (as well as other previous studied) difficulty.","PeriodicalId":333664,"journal":{"name":"2000 Proceedings Workshop on Content-based Access of Image and Video Libraries","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Semantic access of frontal face images: the expression-invariant problem\",\"authors\":\"Aleix M. Mart nez\",\"doi\":\"10.1109/IVL.2000.853840\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Semantic queries to a database of images are more desirable than low-level feature queries, because they facilitate the user's task. One such approach is object-related image retrieval. In the context of face images, it is of interest to retrieve images based on people's names and facial expressions. However, when images of the database are allowed to appear at different facial expressions, the face recognition approach encounters the expression-invariant problem, i.e. how to robustly identify a person's face for which its learning and testing face images differ in facial expression. This paper presents a new local, probabilistic approach that accounts for this (as well as other previous studied) difficulty.\",\"PeriodicalId\":333664,\"journal\":{\"name\":\"2000 Proceedings Workshop on Content-based Access of Image and Video Libraries\",\"volume\":\"92 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 Proceedings Workshop on Content-based Access of Image and Video Libraries\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IVL.2000.853840\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 Proceedings Workshop on Content-based Access of Image and Video Libraries","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVL.2000.853840","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

对图像数据库的语义查询比低级特征查询更可取,因为它们方便了用户的任务。其中一种方法是与对象相关的图像检索。在人脸图像的背景下,基于人的名字和面部表情来检索图像是一个有趣的问题。然而,当允许数据库中的图像以不同的面部表情出现时,人脸识别方法遇到了表情不变性问题,即如何鲁棒地识别一个人脸,其学习和测试的人脸图像在面部表情上是不同的。本文提出了一种新的局部概率方法来解决这个(以及其他先前研究过的)困难。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semantic access of frontal face images: the expression-invariant problem
Semantic queries to a database of images are more desirable than low-level feature queries, because they facilitate the user's task. One such approach is object-related image retrieval. In the context of face images, it is of interest to retrieve images based on people's names and facial expressions. However, when images of the database are allowed to appear at different facial expressions, the face recognition approach encounters the expression-invariant problem, i.e. how to robustly identify a person's face for which its learning and testing face images differ in facial expression. This paper presents a new local, probabilistic approach that accounts for this (as well as other previous studied) difficulty.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信