{"title":"关于可数子移位的导数和子模式阶","authors":"Ville Salo, Ilkka Törmä","doi":"10.4204/EPTCS.90.3","DOIUrl":null,"url":null,"abstract":"We study the computational and structural aspects of countable two-dimensional SFTs and other subshifts. Our main focus is on the topological derivatives and subpattern posets of these objects, and our main results are constructions of two-dimensional countable subshifts with interesting properties. We present an SFT whose iterated derivatives are maximally complex from the computational point of view, a sofic shift whose subpattern poset contains an infinite descending chain, a family of SFTs whose finite subpattern posets contain arbitrary finite posets, and a natural example of an SFT with infinite Cantor-Bendixon rank.","PeriodicalId":415843,"journal":{"name":"AUTOMATA & JAC","volume":"86 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"On Derivatives and Subpattern Orders of Countable Subshifts\",\"authors\":\"Ville Salo, Ilkka Törmä\",\"doi\":\"10.4204/EPTCS.90.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the computational and structural aspects of countable two-dimensional SFTs and other subshifts. Our main focus is on the topological derivatives and subpattern posets of these objects, and our main results are constructions of two-dimensional countable subshifts with interesting properties. We present an SFT whose iterated derivatives are maximally complex from the computational point of view, a sofic shift whose subpattern poset contains an infinite descending chain, a family of SFTs whose finite subpattern posets contain arbitrary finite posets, and a natural example of an SFT with infinite Cantor-Bendixon rank.\",\"PeriodicalId\":415843,\"journal\":{\"name\":\"AUTOMATA & JAC\",\"volume\":\"86 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AUTOMATA & JAC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4204/EPTCS.90.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AUTOMATA & JAC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.90.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On Derivatives and Subpattern Orders of Countable Subshifts
We study the computational and structural aspects of countable two-dimensional SFTs and other subshifts. Our main focus is on the topological derivatives and subpattern posets of these objects, and our main results are constructions of two-dimensional countable subshifts with interesting properties. We present an SFT whose iterated derivatives are maximally complex from the computational point of view, a sofic shift whose subpattern poset contains an infinite descending chain, a family of SFTs whose finite subpattern posets contain arbitrary finite posets, and a natural example of an SFT with infinite Cantor-Bendixon rank.