{"title":"压缩数据采集的信噪比分析","authors":"R. Pribic, G. Leus, Christos Tzotzadinis","doi":"10.1109/SSP.2018.8450796","DOIUrl":null,"url":null,"abstract":"Data acquisition in compressive sensing (CS) is commonly believed to be less complicated, and even less costly, while performing agreeably. There is a major lack of measureable foundations supporting this optimism as the performance and complexity of a CS sensor have hardly been quantified. We aim to fill the gap by computing the performance of diverse compressive data acquisition schemes by the output signal-to-noise ratio (SNR) they provide with the same input signal. The SNR is assessed analytically, and also confirmed numerically with simulated data. Only with a scheme of compressive data acquisition starting directly at reception (with no receiver noise yet), CS is less complicated and still performs as good as, if not better than, existing sensing.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Signal-to-Noise-Ratio Analysis of Compressive Data Acquisition\",\"authors\":\"R. Pribic, G. Leus, Christos Tzotzadinis\",\"doi\":\"10.1109/SSP.2018.8450796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data acquisition in compressive sensing (CS) is commonly believed to be less complicated, and even less costly, while performing agreeably. There is a major lack of measureable foundations supporting this optimism as the performance and complexity of a CS sensor have hardly been quantified. We aim to fill the gap by computing the performance of diverse compressive data acquisition schemes by the output signal-to-noise ratio (SNR) they provide with the same input signal. The SNR is assessed analytically, and also confirmed numerically with simulated data. Only with a scheme of compressive data acquisition starting directly at reception (with no receiver noise yet), CS is less complicated and still performs as good as, if not better than, existing sensing.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"44 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Signal-to-Noise-Ratio Analysis of Compressive Data Acquisition
Data acquisition in compressive sensing (CS) is commonly believed to be less complicated, and even less costly, while performing agreeably. There is a major lack of measureable foundations supporting this optimism as the performance and complexity of a CS sensor have hardly been quantified. We aim to fill the gap by computing the performance of diverse compressive data acquisition schemes by the output signal-to-noise ratio (SNR) they provide with the same input signal. The SNR is assessed analytically, and also confirmed numerically with simulated data. Only with a scheme of compressive data acquisition starting directly at reception (with no receiver noise yet), CS is less complicated and still performs as good as, if not better than, existing sensing.