Francesco Periti, A. Ferrara, S. Montanelli, M. Ruskov
{"title":"做了什么就做了:语义移位检测的增量方法","authors":"Francesco Periti, A. Ferrara, S. Montanelli, M. Ruskov","doi":"10.18653/v1/2022.lchange-1.4","DOIUrl":null,"url":null,"abstract":"Contextual word embedding techniques for semantic shift detection are receiving more and more attention. In this paper, we present What is Done is Done (WiDiD), an incremental approach to semantic shift detection based on incremental clustering techniques and contextual embedding methods to capture the changes over the meanings of a target word along a diachronic corpus. In WiDiD, the word contexts observed in the past are consolidated as a set of clusters that constitute the “memory” of the word meanings observed so far. Such a memory is exploited as a basis for subsequent word observations, so that the meanings observed in the present are stratified over the past ones.","PeriodicalId":120650,"journal":{"name":"Workshop on Computational Approaches to Historical Language Change","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"What is Done is Done: an Incremental Approach to Semantic Shift Detection\",\"authors\":\"Francesco Periti, A. Ferrara, S. Montanelli, M. Ruskov\",\"doi\":\"10.18653/v1/2022.lchange-1.4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Contextual word embedding techniques for semantic shift detection are receiving more and more attention. In this paper, we present What is Done is Done (WiDiD), an incremental approach to semantic shift detection based on incremental clustering techniques and contextual embedding methods to capture the changes over the meanings of a target word along a diachronic corpus. In WiDiD, the word contexts observed in the past are consolidated as a set of clusters that constitute the “memory” of the word meanings observed so far. Such a memory is exploited as a basis for subsequent word observations, so that the meanings observed in the present are stratified over the past ones.\",\"PeriodicalId\":120650,\"journal\":{\"name\":\"Workshop on Computational Approaches to Historical Language Change\",\"volume\":\"27 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Workshop on Computational Approaches to Historical Language Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/2022.lchange-1.4\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Workshop on Computational Approaches to Historical Language Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/2022.lchange-1.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
What is Done is Done: an Incremental Approach to Semantic Shift Detection
Contextual word embedding techniques for semantic shift detection are receiving more and more attention. In this paper, we present What is Done is Done (WiDiD), an incremental approach to semantic shift detection based on incremental clustering techniques and contextual embedding methods to capture the changes over the meanings of a target word along a diachronic corpus. In WiDiD, the word contexts observed in the past are consolidated as a set of clusters that constitute the “memory” of the word meanings observed so far. Such a memory is exploited as a basis for subsequent word observations, so that the meanings observed in the present are stratified over the past ones.