18.7 A 0.7V, 2.35% 3σ-精度的12nm CMOS带隙参考

Yi-Wen Chen, J. Horng, Chin-Ho Chang, A. Kundu, Y. Peng, Mark Chen
{"title":"18.7 A 0.7V, 2.35% 3σ-精度的12nm CMOS带隙参考","authors":"Yi-Wen Chen, J. Horng, Chin-Ho Chang, A. Kundu, Y. Peng, Mark Chen","doi":"10.1109/ISSCC.2019.8662339","DOIUrl":null,"url":null,"abstract":"Bandgap reference (BGR) circuits are widely used due to their stable output voltage over process, supply voltage and temperature variations. Reference voltage stability is critical for data-acquisition applications and lower supply voltages can reduce the power of mixed-signal systems. However BGR for analog circuits is one of the bottlenecks for sub-1V supply operation because BGR supply voltage is limited by VEB+VDS [1]. VEB refers to the emitter-base voltage of a pnp transistor which is limited to ~0.6 to 0.7V due to silicon junction cut-in voltage, while VDS is the drain-source saturation voltage of a current-mirror. The BGR temperature dependence is decided by the weighted sum of proportional-to-absolute-temperature(PTAT) and complementary-to-absolute-temperature (CTAT) terms. An alternative PTAT generator can be implemented by dVGS (gate-to-source voltage difference) of a MOS pair in subthreshold [2]. The CTAT generator can be implemented by special devices or using the gate-source voltage VGS of subthreshold MOSFETs. Although the VGS of a subthreshold MOSFET is smaller than emitter-base voltage of a pnp transistor, the MOSFET model inaccuracy in the subthreshold region and high process-dependent characteristic of MOSFET gate-source voltage induces high variation for voltage reference circuits.","PeriodicalId":265551,"journal":{"name":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","volume":"61 47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"18.7 A 0.7V, 2.35% 3σ-Accuracy Bandgap Reference in 12nm CMOS\",\"authors\":\"Yi-Wen Chen, J. Horng, Chin-Ho Chang, A. Kundu, Y. Peng, Mark Chen\",\"doi\":\"10.1109/ISSCC.2019.8662339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bandgap reference (BGR) circuits are widely used due to their stable output voltage over process, supply voltage and temperature variations. Reference voltage stability is critical for data-acquisition applications and lower supply voltages can reduce the power of mixed-signal systems. However BGR for analog circuits is one of the bottlenecks for sub-1V supply operation because BGR supply voltage is limited by VEB+VDS [1]. VEB refers to the emitter-base voltage of a pnp transistor which is limited to ~0.6 to 0.7V due to silicon junction cut-in voltage, while VDS is the drain-source saturation voltage of a current-mirror. The BGR temperature dependence is decided by the weighted sum of proportional-to-absolute-temperature(PTAT) and complementary-to-absolute-temperature (CTAT) terms. An alternative PTAT generator can be implemented by dVGS (gate-to-source voltage difference) of a MOS pair in subthreshold [2]. The CTAT generator can be implemented by special devices or using the gate-source voltage VGS of subthreshold MOSFETs. Although the VGS of a subthreshold MOSFET is smaller than emitter-base voltage of a pnp transistor, the MOSFET model inaccuracy in the subthreshold region and high process-dependent characteristic of MOSFET gate-source voltage induces high variation for voltage reference circuits.\",\"PeriodicalId\":265551,\"journal\":{\"name\":\"2019 IEEE International Solid- State Circuits Conference - (ISSCC)\",\"volume\":\"61 47 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE International Solid- State Circuits Conference - (ISSCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISSCC.2019.8662339\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Solid- State Circuits Conference - (ISSCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSCC.2019.8662339","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

带隙参考电路由于其稳定的输出电压、电源电压和温度变化而被广泛应用。参考电压稳定性对数据采集应用至关重要,较低的电源电压可以降低混合信号系统的功率。然而,模拟电路的BGR是sub-1V供电运行的瓶颈之一,因为BGR供电电压受到VEB+VDS[1]的限制。VEB是指pnp晶体管的发射极电压,由于硅结的切断电压限制在~0.6 ~ 0.7V,而VDS是电流镜的漏源饱和电压。BGR温度依赖性由比例-绝对温度(PTAT)项和互补-绝对温度(CTAT)项加权和决定。另一种PTAT发生器可以通过在亚阈值[2]中MOS对的dVGS(门源电压差)来实现。CTAT发生器可以通过特殊器件实现,也可以利用亚阈值mosfet的栅源电压VGS实现。尽管亚阈值MOSFET的VGS小于pnp晶体管的发射极电压,但由于MOSFET模型在亚阈值区域的不准确性和MOSFET栅极源电压的高工艺依赖性特性,导致参考电压电路的变化很大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
18.7 A 0.7V, 2.35% 3σ-Accuracy Bandgap Reference in 12nm CMOS
Bandgap reference (BGR) circuits are widely used due to their stable output voltage over process, supply voltage and temperature variations. Reference voltage stability is critical for data-acquisition applications and lower supply voltages can reduce the power of mixed-signal systems. However BGR for analog circuits is one of the bottlenecks for sub-1V supply operation because BGR supply voltage is limited by VEB+VDS [1]. VEB refers to the emitter-base voltage of a pnp transistor which is limited to ~0.6 to 0.7V due to silicon junction cut-in voltage, while VDS is the drain-source saturation voltage of a current-mirror. The BGR temperature dependence is decided by the weighted sum of proportional-to-absolute-temperature(PTAT) and complementary-to-absolute-temperature (CTAT) terms. An alternative PTAT generator can be implemented by dVGS (gate-to-source voltage difference) of a MOS pair in subthreshold [2]. The CTAT generator can be implemented by special devices or using the gate-source voltage VGS of subthreshold MOSFETs. Although the VGS of a subthreshold MOSFET is smaller than emitter-base voltage of a pnp transistor, the MOSFET model inaccuracy in the subthreshold region and high process-dependent characteristic of MOSFET gate-source voltage induces high variation for voltage reference circuits.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信