快速,最小存储射线/三角形相交

T. Akenine-Möller, Ben Trumbore
{"title":"快速,最小存储射线/三角形相交","authors":"T. Akenine-Möller, Ben Trumbore","doi":"10.1145/1198555.1198746","DOIUrl":null,"url":null,"abstract":"We present a clean algorithm for determining whether a ray intersects a triangle. The algorithm translates the origin of the ray and then changes the base of that vector which yields a vector (t u v)T, where t is the distance to the plane in which the triangle lies and (u, v) represents the coordinates inside the triangle.One advantage of this method is that the plane equation need not be computed on the fly nor be stored, which can amount to significant memory savings for triangle meshes. As we found our method to be comparable in speed to previous methods, we believe it is the fastest ray/triangle intersection routine for triangles which do not have precomputed plane equations.","PeriodicalId":192758,"journal":{"name":"ACM SIGGRAPH 2005 Courses","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"849","resultStr":"{\"title\":\"Fast, minimum storage ray/triangle intersection\",\"authors\":\"T. Akenine-Möller, Ben Trumbore\",\"doi\":\"10.1145/1198555.1198746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a clean algorithm for determining whether a ray intersects a triangle. The algorithm translates the origin of the ray and then changes the base of that vector which yields a vector (t u v)T, where t is the distance to the plane in which the triangle lies and (u, v) represents the coordinates inside the triangle.One advantage of this method is that the plane equation need not be computed on the fly nor be stored, which can amount to significant memory savings for triangle meshes. As we found our method to be comparable in speed to previous methods, we believe it is the fastest ray/triangle intersection routine for triangles which do not have precomputed plane equations.\",\"PeriodicalId\":192758,\"journal\":{\"name\":\"ACM SIGGRAPH 2005 Courses\",\"volume\":\"25 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"849\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2005 Courses\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1198555.1198746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2005 Courses","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1198555.1198746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 849

摘要

我们提出了一种确定射线是否与三角形相交的简洁算法。该算法转换光线的原点,然后改变该向量的底,从而得到向量(t u v) t,其中t是到三角形所在平面的距离,(u, v)表示三角形内部的坐标。这种方法的一个优点是,平面方程不需要在飞行中计算,也不需要存储,这可以为三角形网格节省大量内存。由于我们发现我们的方法在速度上与以前的方法相当,我们相信对于没有预先计算平面方程的三角形,它是最快的射线/三角形相交例程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast, minimum storage ray/triangle intersection
We present a clean algorithm for determining whether a ray intersects a triangle. The algorithm translates the origin of the ray and then changes the base of that vector which yields a vector (t u v)T, where t is the distance to the plane in which the triangle lies and (u, v) represents the coordinates inside the triangle.One advantage of this method is that the plane equation need not be computed on the fly nor be stored, which can amount to significant memory savings for triangle meshes. As we found our method to be comparable in speed to previous methods, we believe it is the fastest ray/triangle intersection routine for triangles which do not have precomputed plane equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信