结合回归与聚类的财务分析

Andreea Ioana Chiriac
{"title":"结合回归与聚类的财务分析","authors":"Andreea Ioana Chiriac","doi":"10.2478/icas-2021-0007","DOIUrl":null,"url":null,"abstract":"Abstract Artificial Intelligence is used in business through machine learning algorithms. Machine learning is a part of computer science focused on computer systems learning to perform a specific task without using explicit instructions, relying on patterns and inference instead. Though it might seem like we’ve come a long way in the last ten years, which is true from a research perspective, the adoption of AI among corporations is still relatively low. Over time it became possible to automate more tasks and business processes than ever before. The benefit of using artificial intelligence is that does not require to program every step of the process, predicting at each step what could happen and how to resolve it. The algorithms decide for themselves in each case how the problems should be solved, based on the data that is used. I apply Python language to create a synthetic feature vector that allows visualizations in two dimensions for EDIBTA financial ratio. I use Mean-Square Error in order to evaluate the success, having the optimal parameters. In this section, I also mentioned about the purpose, goals, and applications of cluster analysis. I indicated about the basics of cluster analysis and how to do it and also did a demonstration on how to use K-Means.","PeriodicalId":393626,"journal":{"name":"Proceedings of the International Conference on Applied Statistics","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Combining Regression and Clustering for Financial Analysis\",\"authors\":\"Andreea Ioana Chiriac\",\"doi\":\"10.2478/icas-2021-0007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Artificial Intelligence is used in business through machine learning algorithms. Machine learning is a part of computer science focused on computer systems learning to perform a specific task without using explicit instructions, relying on patterns and inference instead. Though it might seem like we’ve come a long way in the last ten years, which is true from a research perspective, the adoption of AI among corporations is still relatively low. Over time it became possible to automate more tasks and business processes than ever before. The benefit of using artificial intelligence is that does not require to program every step of the process, predicting at each step what could happen and how to resolve it. The algorithms decide for themselves in each case how the problems should be solved, based on the data that is used. I apply Python language to create a synthetic feature vector that allows visualizations in two dimensions for EDIBTA financial ratio. I use Mean-Square Error in order to evaluate the success, having the optimal parameters. In this section, I also mentioned about the purpose, goals, and applications of cluster analysis. I indicated about the basics of cluster analysis and how to do it and also did a demonstration on how to use K-Means.\",\"PeriodicalId\":393626,\"journal\":{\"name\":\"Proceedings of the International Conference on Applied Statistics\",\"volume\":\"95 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the International Conference on Applied Statistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/icas-2021-0007\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Applied Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/icas-2021-0007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

人工智能通过机器学习算法应用于商业。机器学习是计算机科学的一部分,专注于计算机系统在不使用明确指令的情况下学习执行特定任务,而是依靠模式和推理。虽然从研究的角度来看,我们似乎在过去十年中取得了长足的进步,但企业对人工智能的采用仍然相对较低。随着时间的推移,比以前自动化更多的任务和业务流程成为可能。使用人工智能的好处是,它不需要对流程的每一步都进行编程,也不需要在每一步都预测可能发生的事情以及如何解决。算法根据所使用的数据,在每种情况下自行决定如何解决问题。我应用Python语言创建了一个合成特征向量,允许EDIBTA财务比率在两个维度上可视化。我使用均方误差来评估成功,拥有最佳参数。在本节中,我还提到了聚类分析的目的、目标和应用。我指出了聚类分析的基础知识以及如何进行聚类分析,并演示了如何使用K-Means。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combining Regression and Clustering for Financial Analysis
Abstract Artificial Intelligence is used in business through machine learning algorithms. Machine learning is a part of computer science focused on computer systems learning to perform a specific task without using explicit instructions, relying on patterns and inference instead. Though it might seem like we’ve come a long way in the last ten years, which is true from a research perspective, the adoption of AI among corporations is still relatively low. Over time it became possible to automate more tasks and business processes than ever before. The benefit of using artificial intelligence is that does not require to program every step of the process, predicting at each step what could happen and how to resolve it. The algorithms decide for themselves in each case how the problems should be solved, based on the data that is used. I apply Python language to create a synthetic feature vector that allows visualizations in two dimensions for EDIBTA financial ratio. I use Mean-Square Error in order to evaluate the success, having the optimal parameters. In this section, I also mentioned about the purpose, goals, and applications of cluster analysis. I indicated about the basics of cluster analysis and how to do it and also did a demonstration on how to use K-Means.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信