实时HEVC流的基准测试

James Nightingale, Qi Wang, C. Grecos
{"title":"实时HEVC流的基准测试","authors":"James Nightingale, Qi Wang, C. Grecos","doi":"10.1117/12.921406","DOIUrl":null,"url":null,"abstract":"Work towards the standardisation of High Efficiency Video Coding (HEVC), the next generation video coding scheme, is currently gaining pace. HEVC offers the prospect of a 50% improvement in compression over the current H.264 Advanced Video Coding standard (H.264/AVC). Thus far, work on HEVC has concentrated on improvements to the coding efficiency and has not yet addressed transmission in networks other than to mandate byte stream compliance with Annex B of H.264/AVC. For practical networked HEVC applications a number of essential building blocks have yet to be defined. In this work, we design and prototype a real-time HEVC streaming system and empirically evaluate its performance, in particular we consider the robustness of the current Test Model under Consideration (TMuC HM4.0) for HEVC to packet loss caused by a reduction in available bandwidth both in terms of decoder resilience and degradation in perceptual video quality. A NAL unit packetisation and streaming framework for HEVC encoded video streams is designed, implemented and empirically tested in a number of streaming environments including wired, wireless, single path and multiple path network scenarios. As a first step the HEVC decoder’s error resilience is tested under a comprehensive set of packet loss conditions and a simple error concealment method for HEVC is implemented. Similarly to H.264 encoded streams, the size and distribution of NAL units within an HEVC stream and the nature of the NAL unit dependencies influences the packetisation and streaming strategies which may be employed for such streams. The relationships between HEVC encoding mode and the quality of the received video are shown under a wide range of bandwidth constraints. HEVC streaming is evaluated in both single and multipath network configuration scenarios. Through the use of extensive experimentation, we establish a comprehensive set of benchmarks for HEVC streaming in loss prone network environments. We show the visual quality reduction in terms of PSNR which results from a reduction in available bandwidth. To the best of our knowledge, this is the first time that such a fully functional streaming system for HEVC, together with the benchmark evaluation results, has been reported. This study will open up more timely research opportunities in this cutting edge area.","PeriodicalId":369288,"journal":{"name":"Real-Time Image and Video Processing","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Benchmarking real-time HEVC streaming\",\"authors\":\"James Nightingale, Qi Wang, C. Grecos\",\"doi\":\"10.1117/12.921406\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Work towards the standardisation of High Efficiency Video Coding (HEVC), the next generation video coding scheme, is currently gaining pace. HEVC offers the prospect of a 50% improvement in compression over the current H.264 Advanced Video Coding standard (H.264/AVC). Thus far, work on HEVC has concentrated on improvements to the coding efficiency and has not yet addressed transmission in networks other than to mandate byte stream compliance with Annex B of H.264/AVC. For practical networked HEVC applications a number of essential building blocks have yet to be defined. In this work, we design and prototype a real-time HEVC streaming system and empirically evaluate its performance, in particular we consider the robustness of the current Test Model under Consideration (TMuC HM4.0) for HEVC to packet loss caused by a reduction in available bandwidth both in terms of decoder resilience and degradation in perceptual video quality. A NAL unit packetisation and streaming framework for HEVC encoded video streams is designed, implemented and empirically tested in a number of streaming environments including wired, wireless, single path and multiple path network scenarios. As a first step the HEVC decoder’s error resilience is tested under a comprehensive set of packet loss conditions and a simple error concealment method for HEVC is implemented. Similarly to H.264 encoded streams, the size and distribution of NAL units within an HEVC stream and the nature of the NAL unit dependencies influences the packetisation and streaming strategies which may be employed for such streams. The relationships between HEVC encoding mode and the quality of the received video are shown under a wide range of bandwidth constraints. HEVC streaming is evaluated in both single and multipath network configuration scenarios. Through the use of extensive experimentation, we establish a comprehensive set of benchmarks for HEVC streaming in loss prone network environments. We show the visual quality reduction in terms of PSNR which results from a reduction in available bandwidth. To the best of our knowledge, this is the first time that such a fully functional streaming system for HEVC, together with the benchmark evaluation results, has been reported. This study will open up more timely research opportunities in this cutting edge area.\",\"PeriodicalId\":369288,\"journal\":{\"name\":\"Real-Time Image and Video Processing\",\"volume\":\"32 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Real-Time Image and Video Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.921406\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Real-Time Image and Video Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.921406","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

摘要

高效视频编码(HEVC)是下一代视频编码方案,其标准化工作正在加快步伐。与目前的H.264高级视频编码标准(H.264/AVC)相比,HEVC提供了50%的压缩改进前景。到目前为止,HEVC的工作主要集中在提高编码效率上,除了要求字节流符合H.264/AVC附件B之外,还没有解决网络传输的问题。对于实际的网络化HEVC应用,许多基本的构建模块尚未定义。在这项工作中,我们设计并原型了一个实时HEVC流系统,并对其性能进行了实证评估,特别是我们考虑了当前正在考虑的测试模型(TMuC HM4.0)对于HEVC在解码器弹性和感知视频质量下降方面因可用带宽减少而导致的数据包丢失的鲁棒性。针对HEVC编码视频流设计、实现了NAL单元分组和流媒体框架,并在有线、无线、单路径和多路径网络场景等多种流媒体环境中进行了实证测试。首先,测试了HEVC解码器在多种丢包条件下的容错性,并实现了一种简单的HEVC错误隐藏方法。与H.264编码流类似,HEVC流中NAL单元的大小和分布以及NAL单元依赖关系的性质影响了可能用于此类流的分组和流策略。在广泛的带宽限制下,显示了HEVC编码方式与接收视频质量之间的关系。在单路径和多路径网络配置场景下评估HEVC流。通过使用广泛的实验,我们建立了一套全面的HEVC流在容易丢失的网络环境的基准。我们展示了由于可用带宽减少而导致的PSNR的视觉质量降低。据我们所知,这是第一次报道这样一个功能齐全的HEVC流系统,以及基准评估结果。本研究将为这一前沿领域开辟更多及时的研究机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Benchmarking real-time HEVC streaming
Work towards the standardisation of High Efficiency Video Coding (HEVC), the next generation video coding scheme, is currently gaining pace. HEVC offers the prospect of a 50% improvement in compression over the current H.264 Advanced Video Coding standard (H.264/AVC). Thus far, work on HEVC has concentrated on improvements to the coding efficiency and has not yet addressed transmission in networks other than to mandate byte stream compliance with Annex B of H.264/AVC. For practical networked HEVC applications a number of essential building blocks have yet to be defined. In this work, we design and prototype a real-time HEVC streaming system and empirically evaluate its performance, in particular we consider the robustness of the current Test Model under Consideration (TMuC HM4.0) for HEVC to packet loss caused by a reduction in available bandwidth both in terms of decoder resilience and degradation in perceptual video quality. A NAL unit packetisation and streaming framework for HEVC encoded video streams is designed, implemented and empirically tested in a number of streaming environments including wired, wireless, single path and multiple path network scenarios. As a first step the HEVC decoder’s error resilience is tested under a comprehensive set of packet loss conditions and a simple error concealment method for HEVC is implemented. Similarly to H.264 encoded streams, the size and distribution of NAL units within an HEVC stream and the nature of the NAL unit dependencies influences the packetisation and streaming strategies which may be employed for such streams. The relationships between HEVC encoding mode and the quality of the received video are shown under a wide range of bandwidth constraints. HEVC streaming is evaluated in both single and multipath network configuration scenarios. Through the use of extensive experimentation, we establish a comprehensive set of benchmarks for HEVC streaming in loss prone network environments. We show the visual quality reduction in terms of PSNR which results from a reduction in available bandwidth. To the best of our knowledge, this is the first time that such a fully functional streaming system for HEVC, together with the benchmark evaluation results, has been reported. This study will open up more timely research opportunities in this cutting edge area.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信