稀疏深度自编码器估计基于骨骼的步态异常指数

Trong-Nguyen Nguyen, H. Huynh, J. Meunier
{"title":"稀疏深度自编码器估计基于骨骼的步态异常指数","authors":"Trong-Nguyen Nguyen, H. Huynh, J. Meunier","doi":"10.1109/CCE.2018.8465714","DOIUrl":null,"url":null,"abstract":"This paper proposes an approach estimating a gait abnormality index based on skeletal information provided by a depth camera. Differently from related works where the extraction of hand-crafted features is required to describe gait characteristics, our method automatically performs that stage with the support of a deep auto-encoder. In order to get visually interpretable features, we embedded a constraint of sparsity into the model. Similarly to most gait-related studies, the temporal factor is also considered as a post-processing in our system. This method provided promising results when experimenting on a dataset containing nearly one hundred thousand skeleton samples.","PeriodicalId":118716,"journal":{"name":"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)","volume":"23 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Estimating skeleton-based gait abnormality index by sparse deep auto-encoder\",\"authors\":\"Trong-Nguyen Nguyen, H. Huynh, J. Meunier\",\"doi\":\"10.1109/CCE.2018.8465714\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an approach estimating a gait abnormality index based on skeletal information provided by a depth camera. Differently from related works where the extraction of hand-crafted features is required to describe gait characteristics, our method automatically performs that stage with the support of a deep auto-encoder. In order to get visually interpretable features, we embedded a constraint of sparsity into the model. Similarly to most gait-related studies, the temporal factor is also considered as a post-processing in our system. This method provided promising results when experimenting on a dataset containing nearly one hundred thousand skeleton samples.\",\"PeriodicalId\":118716,\"journal\":{\"name\":\"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)\",\"volume\":\"23 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCE.2018.8465714\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Seventh International Conference on Communications and Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCE.2018.8465714","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

提出了一种基于深度相机提供的骨骼信息估计步态异常指数的方法。与需要手工提取特征来描述步态特征的相关工作不同,我们的方法在深度自编码器的支持下自动执行该阶段。为了获得视觉上可解释的特征,我们在模型中嵌入了稀疏性约束。与大多数步态相关的研究类似,在我们的系统中,时间因素也被认为是一种后处理。在包含近10万个骨骼样本的数据集上进行实验时,该方法提供了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Estimating skeleton-based gait abnormality index by sparse deep auto-encoder
This paper proposes an approach estimating a gait abnormality index based on skeletal information provided by a depth camera. Differently from related works where the extraction of hand-crafted features is required to describe gait characteristics, our method automatically performs that stage with the support of a deep auto-encoder. In order to get visually interpretable features, we embedded a constraint of sparsity into the model. Similarly to most gait-related studies, the temporal factor is also considered as a post-processing in our system. This method provided promising results when experimenting on a dataset containing nearly one hundred thousand skeleton samples.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信