基于时域透射法的小型土壤水分传感器

B. Will, I. Rolfes
{"title":"基于时域透射法的小型土壤水分传感器","authors":"B. Will, I. Rolfes","doi":"10.1109/SAS.2014.6798952","DOIUrl":null,"url":null,"abstract":"Delay time measurements are a powerful method for soil moisture measurements. Besides the well-known time domain reflectometry (TDR), a new method, namely the time domain transmissometry (TDT) captures the market for soil moisture sensors. The key benefit of transmission measurements is their robustness against multiple reflections. However, the development of TDT sensors for measurements inside soils is a challenge due to specific geometric requirements. While transmission measurements are in general performed in two port setups, measurements inside soils require an one port setup. Hence, time domain sensors are in general based on reflection measurements. This contribution describes a soil moisture sensor, which combines the advantages of TDR and TDT measurements regarding the suitability for soil moisture measurements. The sensor consists of a concentric coaxial line assembly resulting in a compact setup. The measuring path is realized as an one-wire line to obtain a large cross sectional area and thus, a large soil sample volume.","PeriodicalId":125872,"journal":{"name":"2014 IEEE Sensors Applications Symposium (SAS)","volume":"67 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"A miniaturized soil moisture sensor based on time domain transmissometry\",\"authors\":\"B. Will, I. Rolfes\",\"doi\":\"10.1109/SAS.2014.6798952\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Delay time measurements are a powerful method for soil moisture measurements. Besides the well-known time domain reflectometry (TDR), a new method, namely the time domain transmissometry (TDT) captures the market for soil moisture sensors. The key benefit of transmission measurements is their robustness against multiple reflections. However, the development of TDT sensors for measurements inside soils is a challenge due to specific geometric requirements. While transmission measurements are in general performed in two port setups, measurements inside soils require an one port setup. Hence, time domain sensors are in general based on reflection measurements. This contribution describes a soil moisture sensor, which combines the advantages of TDR and TDT measurements regarding the suitability for soil moisture measurements. The sensor consists of a concentric coaxial line assembly resulting in a compact setup. The measuring path is realized as an one-wire line to obtain a large cross sectional area and thus, a large soil sample volume.\",\"PeriodicalId\":125872,\"journal\":{\"name\":\"2014 IEEE Sensors Applications Symposium (SAS)\",\"volume\":\"67 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Sensors Applications Symposium (SAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SAS.2014.6798952\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Sensors Applications Symposium (SAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SAS.2014.6798952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

延迟时间测量是一种有效的土壤湿度测量方法。除了众所周知的时域反射法(TDR)之外,一种新的方法,即时域透射法(TDT)抓住了土壤湿度传感器的市场。传输测量的主要优点是它们对多次反射的鲁棒性。然而,由于特定的几何要求,开发用于土壤内部测量的TDT传感器是一个挑战。虽然传输测量通常在两个端口设置中进行,但土壤内部的测量需要一个端口设置。因此,时域传感器通常基于反射测量。这篇文章描述了一种土壤湿度传感器,它结合了TDR和TDT测量在土壤湿度测量适用性方面的优势。该传感器由一个同心同轴线组件组成,因此设置紧凑。测量路径被实现为一条单线,以获得大的横截面积,从而获得大的土样体积。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A miniaturized soil moisture sensor based on time domain transmissometry
Delay time measurements are a powerful method for soil moisture measurements. Besides the well-known time domain reflectometry (TDR), a new method, namely the time domain transmissometry (TDT) captures the market for soil moisture sensors. The key benefit of transmission measurements is their robustness against multiple reflections. However, the development of TDT sensors for measurements inside soils is a challenge due to specific geometric requirements. While transmission measurements are in general performed in two port setups, measurements inside soils require an one port setup. Hence, time domain sensors are in general based on reflection measurements. This contribution describes a soil moisture sensor, which combines the advantages of TDR and TDT measurements regarding the suitability for soil moisture measurements. The sensor consists of a concentric coaxial line assembly resulting in a compact setup. The measuring path is realized as an one-wire line to obtain a large cross sectional area and thus, a large soil sample volume.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信