基于dct的极简深度可分卷积神经网络切线脚本算法

Agi Prasetiadi, Julian Saputra, Imada Ramadhanti, Asti Dwi Sripamuji, Risa Riski Amalia
{"title":"基于dct的极简深度可分卷积神经网络切线脚本算法","authors":"Agi Prasetiadi, Julian Saputra, Imada Ramadhanti, Asti Dwi Sripamuji, Risa Riski Amalia","doi":"10.20895/dinda.v3i2.1106","DOIUrl":null,"url":null,"abstract":"The Tangut script, a lesser-explored dead script comprising numerous characters, has received limited attention in deep learning research, particularly in the field of optical character recognition (OCR). Existing OCR studies primarily focus on widely-used characters like Chinese characters and employ deep convolutional neural networks (CNNs) or combinations with recurrent neural networks (RNNs) to enhance accuracy in character recognition. In contrast, this study takes a counterintuitive approach to develop an OCR model specifically for the Tangut script. We utilize shorter layers with slimmer filters using a depthwise separable convolutional neural network (DSCNN) architecture. Furthermore, we preprocess the dataset using a frequency-based transformation, namely the Discrete Cosine Transform (DCT). The results demonstrate successful training of the model, showcasing faster convergence and higher accuracy compared to traditional deep neural networks commonly used in OCR applications.","PeriodicalId":419119,"journal":{"name":"Journal of Dinda : Data Science, Information Technology, and Data Analytics","volume":"40 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimalist DCT-based Depthwise Separable Convolutional Neural Network Approach for Tangut Script\",\"authors\":\"Agi Prasetiadi, Julian Saputra, Imada Ramadhanti, Asti Dwi Sripamuji, Risa Riski Amalia\",\"doi\":\"10.20895/dinda.v3i2.1106\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Tangut script, a lesser-explored dead script comprising numerous characters, has received limited attention in deep learning research, particularly in the field of optical character recognition (OCR). Existing OCR studies primarily focus on widely-used characters like Chinese characters and employ deep convolutional neural networks (CNNs) or combinations with recurrent neural networks (RNNs) to enhance accuracy in character recognition. In contrast, this study takes a counterintuitive approach to develop an OCR model specifically for the Tangut script. We utilize shorter layers with slimmer filters using a depthwise separable convolutional neural network (DSCNN) architecture. Furthermore, we preprocess the dataset using a frequency-based transformation, namely the Discrete Cosine Transform (DCT). The results demonstrate successful training of the model, showcasing faster convergence and higher accuracy compared to traditional deep neural networks commonly used in OCR applications.\",\"PeriodicalId\":419119,\"journal\":{\"name\":\"Journal of Dinda : Data Science, Information Technology, and Data Analytics\",\"volume\":\"40 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Dinda : Data Science, Information Technology, and Data Analytics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.20895/dinda.v3i2.1106\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Dinda : Data Science, Information Technology, and Data Analytics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20895/dinda.v3i2.1106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

唐古特文字是一种由大量字符组成的死文字,在深度学习研究中受到的关注有限,特别是在光学字符识别(OCR)领域。现有的OCR研究主要针对汉字等广泛使用的字符,采用深度卷积神经网络(cnn)或与递归神经网络(rnn)的组合来提高字符识别的准确性。相比之下,本研究采用了一种反直觉的方法来开发专门针对唐古特文字的OCR模型。我们使用深度可分离卷积神经网络(DSCNN)架构使用更短的层和更薄的滤波器。此外,我们使用基于频率的变换预处理数据集,即离散余弦变换(DCT)。结果表明,与OCR应用中常用的传统深度神经网络相比,该模型训练成功,收敛速度更快,精度更高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Minimalist DCT-based Depthwise Separable Convolutional Neural Network Approach for Tangut Script
The Tangut script, a lesser-explored dead script comprising numerous characters, has received limited attention in deep learning research, particularly in the field of optical character recognition (OCR). Existing OCR studies primarily focus on widely-used characters like Chinese characters and employ deep convolutional neural networks (CNNs) or combinations with recurrent neural networks (RNNs) to enhance accuracy in character recognition. In contrast, this study takes a counterintuitive approach to develop an OCR model specifically for the Tangut script. We utilize shorter layers with slimmer filters using a depthwise separable convolutional neural network (DSCNN) architecture. Furthermore, we preprocess the dataset using a frequency-based transformation, namely the Discrete Cosine Transform (DCT). The results demonstrate successful training of the model, showcasing faster convergence and higher accuracy compared to traditional deep neural networks commonly used in OCR applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信