基于CNN的心律失常心电图分类及基于Web应用的心脏病预测

Shekin Paul Jillella, Ch. Rohith, S. Shameem, P. S. S. Babu
{"title":"基于CNN的心律失常心电图分类及基于Web应用的心脏病预测","authors":"Shekin Paul Jillella, Ch. Rohith, S. Shameem, P. S. S. Babu","doi":"10.1109/ICEEICT53079.2022.9768513","DOIUrl":null,"url":null,"abstract":"The prevalence and mortality rates of cardiovascular disease (CVD) continue to rise. As a result, frequent cardiac rhythm monitoring has become an increasingly critical and vital aspect of managing and preventing CVDs. The automatic diagnosis of cardiac illness relies heavily on the classification of electrocardiogram signals. A stroke can result in brain damage and necessitates immediate medical attention. To diagnose an arrhythmia, a doctor must first recognize the abnormal heartbeat and attempt to determine its cause or trigger. Thanks to the development of artificial intelligence and Science that has enabled us to predict the cases of arrhythmia far better than doctors by the use of Convolutional Neural Networks. We in this project aim to diagnose the type of arrhythmias by the spectrograms of numerical data of the ECG images.","PeriodicalId":201910,"journal":{"name":"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"ECG Classification For Arrhythmias using CNN & Heart Disease Prediction using Web application\",\"authors\":\"Shekin Paul Jillella, Ch. Rohith, S. Shameem, P. S. S. Babu\",\"doi\":\"10.1109/ICEEICT53079.2022.9768513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The prevalence and mortality rates of cardiovascular disease (CVD) continue to rise. As a result, frequent cardiac rhythm monitoring has become an increasingly critical and vital aspect of managing and preventing CVDs. The automatic diagnosis of cardiac illness relies heavily on the classification of electrocardiogram signals. A stroke can result in brain damage and necessitates immediate medical attention. To diagnose an arrhythmia, a doctor must first recognize the abnormal heartbeat and attempt to determine its cause or trigger. Thanks to the development of artificial intelligence and Science that has enabled us to predict the cases of arrhythmia far better than doctors by the use of Convolutional Neural Networks. We in this project aim to diagnose the type of arrhythmias by the spectrograms of numerical data of the ECG images.\",\"PeriodicalId\":201910,\"journal\":{\"name\":\"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEEICT53079.2022.9768513\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 First International Conference on Electrical, Electronics, Information and Communication Technologies (ICEEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEEICT53079.2022.9768513","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

心血管疾病(CVD)的患病率和死亡率持续上升。因此,频繁的心律监测已成为管理和预防心血管疾病的一个日益重要和重要的方面。心脏疾病的自动诊断在很大程度上依赖于心电图信号的分类。中风会导致脑损伤,需要立即就医。要诊断心律失常,医生必须首先识别异常的心跳,并试图确定其原因或触发因素。由于人工智能和科学的发展,通过使用卷积神经网络,我们能够比医生更好地预测心律失常的病例。本项目旨在通过心电图像数值数据的谱图来诊断心律失常的类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ECG Classification For Arrhythmias using CNN & Heart Disease Prediction using Web application
The prevalence and mortality rates of cardiovascular disease (CVD) continue to rise. As a result, frequent cardiac rhythm monitoring has become an increasingly critical and vital aspect of managing and preventing CVDs. The automatic diagnosis of cardiac illness relies heavily on the classification of electrocardiogram signals. A stroke can result in brain damage and necessitates immediate medical attention. To diagnose an arrhythmia, a doctor must first recognize the abnormal heartbeat and attempt to determine its cause or trigger. Thanks to the development of artificial intelligence and Science that has enabled us to predict the cases of arrhythmia far better than doctors by the use of Convolutional Neural Networks. We in this project aim to diagnose the type of arrhythmias by the spectrograms of numerical data of the ECG images.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信