NISQ器件上的量子图像分类

Shuroog Al-Ogbi, Abdulrahman Ashour, Muhamad Felemban
{"title":"NISQ器件上的量子图像分类","authors":"Shuroog Al-Ogbi, Abdulrahman Ashour, Muhamad Felemban","doi":"10.1109/CICN56167.2022.10008259","DOIUrl":null,"url":null,"abstract":"Quantum computing is an emerging computing field that is expected to make a huge impact on several scopes of science and technology. In this paper, we investigate the role of quantum computing in image classification, as an important branch of machine learning with widely used applications in healthcare, military, and IR4.0. In particular, we systemically compare the performance of two well-known classical image classification systems, i.e., Support Vector Machine (SVM) and Convolutions Neural Network (CNN), with equivalent quantum image classification algorithms, i.e., Quantum Support Vector Machine (Q-SVM) and Quantum Convolutional Neural Network (Q-CNN). Both quantum and classical algorithms are implemented on available Noisy-Intermediate Scale Quantum (NISQ) devices using MNIST dataset. Performance of models were compared regarding accuracy and training time. The results show that classical algorithms outperform the quantum algorithms for the given tasks. However, we observe that large-scale fault-tolerant quantum computing can effectively perform image classification tasks in the future.","PeriodicalId":287589,"journal":{"name":"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quantum Image Classification on NISQ Devices\",\"authors\":\"Shuroog Al-Ogbi, Abdulrahman Ashour, Muhamad Felemban\",\"doi\":\"10.1109/CICN56167.2022.10008259\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computing is an emerging computing field that is expected to make a huge impact on several scopes of science and technology. In this paper, we investigate the role of quantum computing in image classification, as an important branch of machine learning with widely used applications in healthcare, military, and IR4.0. In particular, we systemically compare the performance of two well-known classical image classification systems, i.e., Support Vector Machine (SVM) and Convolutions Neural Network (CNN), with equivalent quantum image classification algorithms, i.e., Quantum Support Vector Machine (Q-SVM) and Quantum Convolutional Neural Network (Q-CNN). Both quantum and classical algorithms are implemented on available Noisy-Intermediate Scale Quantum (NISQ) devices using MNIST dataset. Performance of models were compared regarding accuracy and training time. The results show that classical algorithms outperform the quantum algorithms for the given tasks. However, we observe that large-scale fault-tolerant quantum computing can effectively perform image classification tasks in the future.\",\"PeriodicalId\":287589,\"journal\":{\"name\":\"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICN56167.2022.10008259\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 14th International Conference on Computational Intelligence and Communication Networks (CICN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICN56167.2022.10008259","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

量子计算是一个新兴的计算领域,预计将对多个科学技术领域产生巨大影响。在本文中,我们研究了量子计算在图像分类中的作用,作为机器学习的一个重要分支,在医疗、军事和工业4.0中有着广泛的应用。特别是,我们系统地比较了两种著名的经典图像分类系统,即支持向量机(SVM)和卷积神经网络(CNN)与等效的量子图像分类算法,即量子支持向量机(Q-SVM)和量子卷积神经网络(Q-CNN)的性能。利用MNIST数据集,在现有的噪声-中间尺度量子(NISQ)设备上实现了量子和经典算法。比较了模型的准确率和训练时间。结果表明,在给定的任务中,经典算法优于量子算法。然而,我们观察到大规模容错量子计算在未来可以有效地执行图像分类任务。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Image Classification on NISQ Devices
Quantum computing is an emerging computing field that is expected to make a huge impact on several scopes of science and technology. In this paper, we investigate the role of quantum computing in image classification, as an important branch of machine learning with widely used applications in healthcare, military, and IR4.0. In particular, we systemically compare the performance of two well-known classical image classification systems, i.e., Support Vector Machine (SVM) and Convolutions Neural Network (CNN), with equivalent quantum image classification algorithms, i.e., Quantum Support Vector Machine (Q-SVM) and Quantum Convolutional Neural Network (Q-CNN). Both quantum and classical algorithms are implemented on available Noisy-Intermediate Scale Quantum (NISQ) devices using MNIST dataset. Performance of models were compared regarding accuracy and training time. The results show that classical algorithms outperform the quantum algorithms for the given tasks. However, we observe that large-scale fault-tolerant quantum computing can effectively perform image classification tasks in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信